Low-temperature hydrothermal carbonization of activated carbon microsphere derived from microcrystalline cellulose as carbon dioxide (CO2) adsorbent

被引:17
作者
Taher, T. [1 ,5 ]
Maulana, S. [2 ,5 ]
Mawaddah, N. [1 ]
Munandar, A. [1 ]
Rianjanu, A. [3 ,5 ]
Lesbani, A. [4 ]
机构
[1] Inst Teknol Sumatera, Dept Environm Engn, Jl Terusan Ryacudu, Lampung 35365, Indonesia
[2] Inst Teknol Sumatera, Dept Forestry Engn, Jl Terusan Ryacudu, Jati Agung 35365, Lampung, Indonesia
[3] Inst Teknol Sumatera, Dept Mat Engn, Jl Terusan Ryacudu, Jati Agung 35365, Lampung, Indonesia
[4] Sriwijaya Univ, Grad Sch Math & Nat Sci, Indralaya 30662, Indonesia
[5] Inst Teknol Sumatera, Ctr Green & Sustainable Mat, Jl Terusan Ryacudu, Jati Agung 35365, Lampung, Indonesia
关键词
Cellulose; Hydrochar microspheres; Activated carbon; CO; 2; adsorption; METHYLENE-BLUE; ADSORPTION; CAPTURE; BIOMASS; MICROPORES; NAOH;
D O I
10.1016/j.mtsust.2023.100464
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Activated carbon material produced by the low-temperature hydrothermal processes was needed to further decrease the production cost of CO2 adsorbent materials. In this study, we fabricated cellulose hydrochar microspheres (CHM) materials with a relatively low hydrothermal temperature (200 & DEG;C) with prolonged hydrothermal reaction time (48 h) using microcrystalline cellulose as a feedstock. The CHM is then further activated using a thermal and chemical agent. The activated carbon microsphere was then characterized using scanning electron microscopy (SEM), an X-ray diffractometer (XRD), and Fourier transforms infrared (FTIR) spectroscopy. The Brunauer-Emmett-Teller (BET) surface area (SBET) of the thermal activation (ACS) activated carbon was enhanced significantly with further chemical activation with KOH and NaOH, from 589 m2/g to 1334 m2/g and 2296 m2/g, respectively. Moreover, CHONS elemental analysis suggests that the chemical activation process enhances the surface functional group. Increasing textural properties and enrichment of the functional group of the ACS-NaOH and ACS-KOH samples gave a CO2 adsorption capacity up to 7.07 mmol/g after 300 min of contact. This finding enables the possibility of producing cellulose hydrochar microspheres using a low hydrothermal temperature that can be further activated to become CO2 adsorbent materials with great CO2 capture capabilities.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Activated carbons from biomass-based sources for CO2 capture applications
    Abuelnoor, Nada
    AlHajaj, Ahmed
    Khaleel, Maryam
    Vega, Lourdes F.
    Abu-Zahra, Mohammad R. M.
    [J]. CHEMOSPHERE, 2021, 282
  • [2] Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity
    Alabadi, Akram
    Razzaque, Shumaila
    Yang, Yuwan
    Chen, Shi
    Tan, Bien
    [J]. CHEMICAL ENGINEERING JOURNAL, 2015, 281 : 606 - 612
  • [3] Porous, flexible, and core-shell structured carbon nanofibers hybridized by tin oxide nanoparticles for efficient carbon dioxide capture
    Ali, Nadir
    Babar, Aijaz Ahmed
    Zhang, Yufei
    Iqbal, Nousheen
    Wang, Xianfeng
    Yu, Jianyong
    Ding, Bin
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 560 : 379 - 387
  • [4] One-pot synthesis of self S-doped porous carbon for efficient CO2 adsorption
    Bai, Jiali
    Huang, Jiamei
    Yu, Qiyun
    Demir, Muslum
    Gecit, Fehime Hayal
    Altay, Bilge Nazli
    Wang, Linlin
    Hu, Xin
    [J]. FUEL PROCESSING TECHNOLOGY, 2023, 244
  • [5] Cellulose and lignin profiling in seven, economically important bamboo species of India by anatomical, biochemical, FTIR spectroscopy and thermogravimetric analysis
    Biswas, Subhadeep
    Rahaman, Touhidur
    Gupta, Pooja
    Mitra, Rumela
    Dutta, Smritikana
    Kharlyngdoh, Evanylla
    Guha, Suman
    Ganguly, Jhuma
    Pal, Amita
    Das, Malay
    [J]. BIOMASS & BIOENERGY, 2022, 158
  • [6] CO2 capture using N-containing nanoporous activated carbon obtained from argan fruit shells
    Boujibar, Ouassim
    Souikny, Ahmed
    Ghamouss, Fouad
    Achak, Ouafae
    Dahbi, Mouad
    Chafik, Tarik
    [J]. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2018, 6 (02): : 1995 - 2002
  • [7] Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments
    Chen, Wenshuai
    Yu, Haipeng
    Liu, Yixing
    Chen, Peng
    Zhang, Mingxin
    Hai, Yunfei
    [J]. CARBOHYDRATE POLYMERS, 2011, 83 (04) : 1804 - 1811
  • [8] Chemical and morphological changes in hydrochars derived from microcrystalline cellulose and investigated by chromatographic, spectroscopic and adsorption techniques
    Diakite, Mamadou
    Paul, Andrea
    Jaeger, Christian
    Pielert, Judith
    Mumme, Jan
    [J]. BIORESOURCE TECHNOLOGY, 2013, 150 : 98 - 105
  • [9] Green and simple approach for low-cost bioproducts preparation and CO2 capture
    Duran-Jimenez, Gabriela
    Kostas, Emily T.
    Stevens, Lee A.
    Meredith, Will
    Erans, Maria
    Hernandez-Montoya, Virginia
    Buttress, Adam
    Uguna, Clement N.
    Binner, Eleanor
    [J]. CHEMOSPHERE, 2021, 279
  • [10] The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption
    Han, Jun
    Zhang, Li
    Zhao, Bo
    Qin, Linbo
    Wang, Yu
    Xing, Futang
    [J]. INDUSTRIAL CROPS AND PRODUCTS, 2019, 128 : 290 - 297