Preoperative prediction of microvascular invasion and perineural invasion in pancreatic ductal adenocarcinoma with 18F-FDG PET/CT radiomics analysis

被引:6
作者
Jiang, C. [1 ,2 ]
Yuan, Y. [3 ]
Gu, B. [1 ]
Ahn, E. [4 ]
Kim, J. [3 ]
Feng, D. [3 ]
Huang, Q. [5 ]
Song, S. [1 ]
机构
[1] Fudan Univ, Shanghai Canc Ctr, Dept Nucl Med, 270 Dongan Rd, Shanghai 200032, Peoples R China
[2] Cent South Univ, Xiangya Hosp 2, Dept Nucl Med, Changsha, Peoples R China
[3] Univ Sydney, Sch Comp Sci, Biomed & Multimedia Informat Technol Res Grp, Sydney, Australia
[4] James Cook Univ, Coll Sci & Engn, Discipline Informat Technol d, Douglas, Australia
[5] Shanghai Jiao Tong Univ, Sch Biomed Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
PROSPECTIVE DIAGNOSTIC-ACCURACY; CHEMORADIATION THERAPY; COMPUTED-TOMOGRAPHY; EARLY RECURRENCE; RISK-FACTORS; CANCER; RESECTION; INVOLVEMENT; NOMOGRAM;
D O I
10.1016/j.crad.2023.05.007
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
AIM: To develop and validate a predictive model based on 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) radiomics features and clinicopathological parameters to preoperatively identify microvascular invasion (MVI) and perineural invasion (PNI), which are important predictors of poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC).MATERIALS AND METHODS: Preoperative 18F-FDG PET/CT images and clinicopathological parameters of 170 patients in PDAC were collected retrospectively. The whole tumour and its peritumoural variants (tumour dilated with 3, 5, and 10 mm pixels) were applied to add tumour periphery information. A feature-selection algorithm was employed to mine mono-modality and fused feature subsets, then conducted binary classification using gradient boosted decision trees.RESULTS: For MVI prediction, the model performed best on a fused subset of 18F-FDG PET/CT radiomics features and two clinicopathological parameters, with an area under the receiver operating characteristic curve (AUC) of 83.08%, accuracy of 78.82%, recall of 75.08%, precision of 75.5%, and F1-score of 74.59%. For PNI prediction, the model achieved best prediction results only on the subset of PET/CT radiomics features, with AUC of 94%, accuracy of 89.33%, recall of 90%, precision of 87.81%, and F1 score of 88.35%. In both models, 3 mm dilation on the tumour volume produced the best results.CONCLUSIONS: The radiomics predictors from preoperative 18F-FDG PET/CT imaging exhibited instructive predictive efficacy in the identification of MVI and PNI status preoperatively in PDAC. Peritumoural information was shown to assist in MVI and PNI predictions. & COPY; 2023 Published by Elsevier Ltd on behalf of The Royal College of Radiologists.
引用
收藏
页码:687 / 696
页数:10
相关论文
共 41 条
[21]   Tumor-positive resection margins reflect an aggressive tumor biology in pancreatic cancer [J].
Kimbrough, Charles W. ;
St Hill, Charles R. ;
Martin, Robert C. G. ;
McMasters, Kelly M. ;
Scoggins, Charles R. .
JOURNAL OF SURGICAL ONCOLOGY, 2013, 107 (06) :602-607
[22]   Radiomics: the bridge between medical imaging and personalized medicine [J].
Lambin, Philippe ;
Leijenaar, Ralph T. H. ;
Deist, Timo M. ;
Peerlings, Jurgen ;
de Jong, Evelyn E. C. ;
van Timmeren, Janita ;
Sanduleanu, Sebastian ;
Larue, Ruben T. H. M. ;
Even, Aniek J. G. ;
Jochems, Arthur ;
van Wijk, Yvonka ;
Woodruff, Henry ;
van Soest, Johan ;
Lustberg, Tim ;
Roelofs, Erik ;
van Elmpt, Wouter ;
Dekker, Andre ;
Mottaghy, Felix M. ;
Wildberger, Joachim E. ;
Walsh, Sean .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) :749-762
[23]   18F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients [J].
Li, Panli ;
Wang, Xiuying ;
Xu, Chongrui ;
Liu, Cheng ;
Zheng, Chaojie ;
Fulham, Michael J. ;
Feng, Dagan ;
Wang, Lisheng ;
Song, Shaoli ;
Huang, Gang .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (05) :1116-1126
[24]   Preoperative prediction of perineural invasion and KRAS mutation in colon cancer using machine learning [J].
Li, Yu ;
Eresen, Aydin ;
Shangguan, Junjie ;
Yang, Jia ;
Benson, Al B., III ;
Yaghmai, Vahid ;
Zhang, Zhuoli .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2020, 146 (12) :3165-3174
[25]   Perineural Invasion in Cancer A Review of the Literature [J].
Liebig, Catherine ;
Ayala, Gustavo ;
Wilks, Jonathan A. ;
Berger, David H. ;
Albo, Daniel .
CANCER, 2009, 115 (15) :3379-3391
[26]   Predicting EGFR mutation subtypes in lung adenocarcinoma using 18F-FDG PET/CT radiomic features [J].
Liu, Qiufang ;
Sun, Dazhen ;
Li, Nan ;
Kim, Jinman ;
Feng, Dagan ;
Huang, Gang ;
Wang, Lisheng ;
Song, Shaoli .
TRANSLATIONAL LUNG CANCER RESEARCH, 2020, 9 (03) :549-+
[27]   MRI features predict microvascular invasion in intrahepatic cholangiocarcinoma [J].
Ma, Xijuan ;
Liu, Liheng ;
Fang, Jun ;
Rao, Shengxiang ;
Lv, Lulu ;
Zeng, Mengsu ;
Shi, Yibing ;
Yang, Chun .
CANCER IMAGING, 2020, 20 (01)
[28]   Proposed preoperative risk factors for early recurrence in patients with resectable pancreatic ductal adenocarcinoma after surgical resection: A multi-center retrospective study [J].
Matsumoto, Ippei ;
Murakami, Yoshiaki ;
Shinzeki, Makoto ;
Asari, Sadaki ;
Goto, Tadahiro ;
Tani, Masaji ;
Motoi, Fuyuhiko ;
Uemura, Kenichiro ;
Sho, Masayuki ;
Satoi, Sohei ;
Honda, Goro ;
Yamaue, Hiroki ;
Unno, Michiaki ;
Akahori, Takahiro ;
Kwon, A-Hon ;
Kurata, Masanao ;
Ajiki, Tetsuo ;
Fukumoto, Takumi ;
Ku, Yonson .
PANCREATOLOGY, 2015, 15 (06) :674-680
[29]   A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma [J].
Peng, Jie ;
Zhang, Jing ;
Zhang, Qifan ;
Xu, Yikai ;
Zhou, Jie ;
Liu, Li .
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2018, 24 (03) :121-+
[30]   Machine learning based on clinico-biological features integrated18F-FDG PET/CT radiomics for distinguishing squamous cell carcinoma from adenocarcinoma of lung [J].
Ren, Caiyue ;
Zhang, Jianping ;
Qi, Ming ;
Zhang, Jiangang ;
Zhang, Yingjian ;
Song, Shaoli ;
Sun, Yun ;
Cheng, Jingyi .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (05) :1538-1549