Pt clusters in carbon network to enhance photocatalytic CO2 and benzene conversion of WOx/g-C3N4 nanosheets

被引:55
|
作者
Zhang, Xiao [1 ,3 ,4 ]
Matras-Postolek, Katarzyna [1 ]
Yang, Ping [2 ]
Jiang, San Ping [3 ,4 ]
机构
[1] Cracow Univ Technol, Fac Chem Engn & Technol, Warszawska 24 St, PL-31155 Krakow, Poland
[2] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
[3] Curtin Univ, WA Sch Mines Minerals, Perth, WA 6845, Australia
[4] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
基金
中国国家自然科学基金;
关键词
G-C3N4; WOx; Pt clusters; CO2; Benzene; Photocatalysis; G-C3N4; NANOSHEETS; WATER; EVOLUTION; 2D; HETEROJUNCTIONS; CRYSTALLINITY; NANOPARTICLES; ARCHITECTURES; COCATALYSTS; REDUCTION;
D O I
10.1016/j.carbon.2023.118337
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Noble metals in carbon networks dramatically improve the carrier separation and transfer efficiencies of layered graphic carbon nitride (g-C3N4) based heterostructures for efficient CO2 and benzene photocatalytic conversion. Here, Pt clusters are homogeneously incorporated into ultrathin g-C3N4 nanosheets via multi-step treatment method using the combinations of mechano-chemical pre-reaction and two-step thermal condensation processes. Small Pt nanoparticles with diameters of less than 5 nm are observed and WOx nanobelts with increased oxygen vacancies (as the active sites) are horizontally grown on the thin Pt-g-C3N4 nanosheets. The photocatalytic activities of the constructed composite materials are evaluated under full solar spectrum irradiation condition including water splitting, CO2 photoreduction, and benzene to phenol conversion. The WOx/Pt-g-C3N4 nanosheet heterostructures with optimized preparation condition and without adding any co-catalyst reveals enhanced H-2 generation (5267 mu molg(-1)h(-1)) and CO2 photoreduction (5.89 and 3.12 mu molg(-1)h(-1) for CO and CH4 conversion rate, respectively), as well as improved benzene to phenol conversion (89.0%) and selectivity (98.2%). The presence of Pt clusters in the heterostructures improves charge transport in-between g-C3N4 and WOx, thus enhances the charge separation efficiency of the composite material. Detailed photocatalytic mechanisms are discussed on the alteration from S-scheme WOx/g-C3N4 heterostructure to Z-scheme WOx/Pt-g-C3N4 heterostructure.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Dual role of g-C3N4 microtubes in enhancing photocatalytic CO2 reduction of Co3O4 nanoparticles
    Cao, Hui
    Yan, Yumeng
    Wang, Yuan
    Chen, Fei-Fei
    Yu, Yan
    CARBON, 2023, 201 : 415 - 424
  • [22] Phosphorus-Doped Hollow Tubular g-C3N4 for Enhanced Photocatalytic CO2 Reduction
    Sun, Manying
    Zhu, Chuanwei
    Wei, Su
    Chen, Liuyun
    Ji, Hongbing
    Su, Tongming
    Qin, Zuzeng
    MATERIALS, 2023, 16 (20)
  • [23] Improving g-C3N4 photocatalytic performance by hybridizing with Bi2O2CO3 nanosheets
    Zhang, Qitao
    Xu, Bin
    Yuan, Saisai
    Zhang, Ming
    Ohno, Teruhisa
    CATALYSIS TODAY, 2017, 284 : 27 - 36
  • [24] Synthesis of g-C3N4/BiVO4 Nanocomposite Photocatalyst and Its Application in Photocatalytic Reduction of CO2
    Huang Yan
    Fu Min
    He Tao
    ACTA PHYSICO-CHIMICA SINICA, 2015, 31 (06) : 1145 - 1152
  • [25] Ti3C2 MXene embellished g-C3N4 nanosheets for improving photocatalytic redox capacity
    Liu, Wenzhu
    Sun, Mingxuan
    Ding, Zhipeng
    Gao, Bowen
    Ding, Wen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 877
  • [26] NiCo2S4 decorated g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution
    Li, Chunhe
    Liang, Yulan
    Lu, Zhufeng
    Xiang, Xiaoyan
    Ying, Lu
    Wang, Hongmei
    JOURNAL OF NANOPARTICLE RESEARCH, 2020, 22 (02)
  • [27] Pt clusters embedded in g-C3N4 nanosheets to form Z-scheme heterostructures with enhanced photochemical performance
    Zhang, Xiao
    Zhang, Xiaoran
    Yang, Ping
    Jiang, San Ping
    SURFACES AND INTERFACES, 2021, 27
  • [28] 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution
    Su, Tongming
    Hood, Zachary D.
    Naguib, Michael
    Bai, Lei
    Luo, Si
    Rouleau, Christopher M.
    Ivanov, Ilia N.
    Ji, Hongbing
    Qin, Zuzeng
    Wu, Zili
    NANOSCALE, 2019, 11 (17) : 8138 - 8149
  • [29] NiO/g-C3N4 quantum dots for photocatalytic CO2 reduction
    Tao, Feifei
    Dong, Yali
    Yang, Lingang
    APPLIED SURFACE SCIENCE, 2023, 638
  • [30] g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction
    Sun, Zhuxing
    Wang, Haiqiang
    Wu, Zhongbiao
    Wang, Lianzhou
    CATALYSIS TODAY, 2018, 300 : 160 - 172