共 50 条
Pt clusters in carbon network to enhance photocatalytic CO2 and benzene conversion of WOx/g-C3N4 nanosheets
被引:55
|作者:
Zhang, Xiao
[1
,3
,4
]
Matras-Postolek, Katarzyna
[1
]
Yang, Ping
[2
]
Jiang, San Ping
[3
,4
]
机构:
[1] Cracow Univ Technol, Fac Chem Engn & Technol, Warszawska 24 St, PL-31155 Krakow, Poland
[2] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
[3] Curtin Univ, WA Sch Mines Minerals, Perth, WA 6845, Australia
[4] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
来源:
基金:
中国国家自然科学基金;
关键词:
G-C3N4;
WOx;
Pt clusters;
CO2;
Benzene;
Photocatalysis;
G-C3N4;
NANOSHEETS;
WATER;
EVOLUTION;
2D;
HETEROJUNCTIONS;
CRYSTALLINITY;
NANOPARTICLES;
ARCHITECTURES;
COCATALYSTS;
REDUCTION;
D O I:
10.1016/j.carbon.2023.118337
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Noble metals in carbon networks dramatically improve the carrier separation and transfer efficiencies of layered graphic carbon nitride (g-C3N4) based heterostructures for efficient CO2 and benzene photocatalytic conversion. Here, Pt clusters are homogeneously incorporated into ultrathin g-C3N4 nanosheets via multi-step treatment method using the combinations of mechano-chemical pre-reaction and two-step thermal condensation processes. Small Pt nanoparticles with diameters of less than 5 nm are observed and WOx nanobelts with increased oxygen vacancies (as the active sites) are horizontally grown on the thin Pt-g-C3N4 nanosheets. The photocatalytic activities of the constructed composite materials are evaluated under full solar spectrum irradiation condition including water splitting, CO2 photoreduction, and benzene to phenol conversion. The WOx/Pt-g-C3N4 nanosheet heterostructures with optimized preparation condition and without adding any co-catalyst reveals enhanced H-2 generation (5267 mu molg(-1)h(-1)) and CO2 photoreduction (5.89 and 3.12 mu molg(-1)h(-1) for CO and CH4 conversion rate, respectively), as well as improved benzene to phenol conversion (89.0%) and selectivity (98.2%). The presence of Pt clusters in the heterostructures improves charge transport in-between g-C3N4 and WOx, thus enhances the charge separation efficiency of the composite material. Detailed photocatalytic mechanisms are discussed on the alteration from S-scheme WOx/g-C3N4 heterostructure to Z-scheme WOx/Pt-g-C3N4 heterostructure.
引用
收藏
页数:12
相关论文