Bug severity classification in software using ant colony optimization based feature weighting technique

被引:1
|
作者
Kukkar, Ashima [1 ]
Kumar, Yugal [2 ]
Sharma, Ashutosh [3 ]
Sandhu, Jasminder Kaur [4 ]
机构
[1] Chitkara Univ, Inst Engn & Technol, Rajpura, Punjab, India
[2] JUIT, Dept Comp Sci & Engn, Solan, Himachal Prades, India
[3] Univ Petr & Energy Studies, Sch Comp Sci, Dehra Dun, India
[4] Chandigarh Univ, Dept Comp Sci & Engn, Mohali, India
关键词
Natural language processing; Feature weighting; Support vector machine; Ant colony optimization; Naive bayes; MACHINE LEARNING TECHNIQUES; FEATURE-SELECTION; PREDICTION;
D O I
10.1016/j.eswa.2023.120573
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
At the present, the delivery of the software should be time-bound without affecting the quality of the software. However, bug severity can affect the timely delivery of software. It is a crucial component of the software engineering, including maintenance and testing. Both phases are essential for bug severity classification but require much time. Generally, bug triage is responsible for classifying the bugs based on criticality/severeness. The manual execution of this process is error-prone. Consequently, a model for automatic bug classification is required to help the bug triage. In this work, the ant colony optimization (ACO) based feature extraction technique is proposed to extract more relevant features for bug severity classification. Furthermore, the ACO technique is integrated with NB, SVM, DeepFM and F-SVM techniques for predicting bug severity and classifying bugs into multi-severity classes. Several benchmark projects such as Eclipse, Mozilla, OpenFOAM, JBoss, and Firefox, are considered to evaluate the efficacy of the techniques above. The simulation outcomes are expressed in terms of Accuracy, Precision, Recall, and F1-measure. It is noted that the outcomes of the SVM, NB, DeepFM and F-SVM approaches are improved by the ACO-based feature weighting technique. The accuracy rate of ACO-FSVM, ACO-NB, ACO-SVM, ACO-DeepFM, NB, SVM, F-SVM, DeepFM techniques are ranging in between 85.73 and 89.38%, 78% to 80%, 73% to 76%, 92.67% to 97.27 %, 71% to 77%,65% to 74%, 78.21% to 81.28% and 90.02% to 95.24% respectively for five benchmark projects. Further, proposed techniques are also produced better simulation results as compared with state-of -the-art techniques. Friedman and post hoc statistical tests are also conducted on proposed techniques.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Pattern Matching based Classification using Ant Colony Optimization based Feature Selection
    Sreeja, N. K.
    Sankar, A.
    APPLIED SOFT COMPUTING, 2015, 31 : 91 - 102
  • [2] An Ensemble Classifier Based on Feature Selection Using Ant Colony Optimization
    Cao, Jianjun
    Lv, Guojun
    Shang, Yuling
    Weng, Nianfeng
    Chang, Chen
    Liu, Yi
    2018 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2018,
  • [3] Sequence Based Feature Selection using Ant Colony Optimization
    Markid, Hossein Yeganeh
    Dadaneh, Behrouz Zamani
    Moghaddam, Mohsen Ebrahimi
    2015 5TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2015, : 100 - 105
  • [4] A wrapper-filter feature selection technique based on ant colony optimization
    Manosij Ghosh
    Ritam Guha
    Ram Sarkar
    Ajith Abraham
    Neural Computing and Applications, 2020, 32 : 7839 - 7857
  • [5] Feature Selection using Ant Colony Optimization
    Deriche, Mohamed
    2009 6TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS AND DEVICES, VOLS 1 AND 2, 2009, : 619 - 622
  • [6] Unsupervised probabilistic feature selection using ant colony optimization
    Dadaneh, Behrouz Zamani
    Markid, Hossein Yeganeh
    Zakerolhosseini, Ali
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 53 : 27 - 42
  • [7] A wrapper-filter feature selection technique based on ant colony optimization
    Ghosh, Manosij
    Guha, Ritam
    Sarkar, Ram
    Abraham, Ajith
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (12) : 7839 - 7857
  • [8] A Feature Selection Technique for Cloud IDS Using Ant Colony Optimization and Decision Tree
    Ibrahim, Nurudeen Mahmud
    Zainal, Anazida
    ADVANCED SCIENCE LETTERS, 2017, 23 (09) : 9163 - 9169
  • [9] Ant Colony Optimization Based Feature Selection for Opinion Mining Classification
    Saraswathi, K.
    Tamilarasi, A.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (07) : 1594 - 1599
  • [10] Image Feature Selection Based on Ant Colony Optimization
    Chen, Ling
    Chen, Bolun
    Chen, Yixin
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 580 - +