The COMPASS Complex Regulates Fungal Development and Virulence through Histone Crosstalk in the Fungal Pathogen Cryptococcus neoformans

被引:5
|
作者
Liu, Ruoyan [1 ]
Chen, Xiaoyu [1 ]
Zhao, Fujie [1 ]
Jiang, Yixuan [1 ]
Lu, Zhenguo [1 ]
Ji, Huining [2 ]
Feng, Yuanyuan [2 ]
Li, Junqiang [1 ]
Zhang, Heng [1 ]
Zheng, Jianting [2 ,3 ]
Zhang, Jing [1 ]
Zhao, Youbao [1 ]
机构
[1] Henan Agr Univ, Coll Vet Med, Zhengzhou 450046, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, State Key Lab Microbial Metab, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Joint Int Res Lab Metab & Dev Sci, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
COMPASS; H2B ubiquitination; Cryptococcus neoformans; yeast-to-hypha transition; virulence; H3K4; METHYLATION; HYPHAL GROWTH; C; NEOFORMANS; TITAN CELL; METHYLTRANSFERASE; TERMINATION; HOMOLOG; FAMILY; DOMAIN; LEVEL;
D O I
10.3390/jof9060672
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The Complex of Proteins Associated with Set1 (COMPASS) methylates lysine K4 on histone H3 (H3K4) and is conserved from yeast to humans. Its subunits and regulatory roles in the meningitis-causing fungal pathogen Cryptococcus neoformans remain unknown. Here we identified the core subunits of the COMPASS complex in C. neoformans and C. deneoformans and confirmed their conserved roles in H3K4 methylation. Through AlphaFold modeling, we found that Set1, Bre2, Swd1, and Swd3 form the catalytic core of the COMPASS complex and regulate the cryptococcal yeast-to-hypha transition, thermal tolerance, and virulence. The COMPASS complex-mediated histone H3K4 methylation requires H2B mono-ubiquitination by Rad6/Bre1 and the Paf1 complex in order to activate the expression of genes specific for the yeast-to-hypha transition in C. deneoformans. Taken together, our findings demonstrate that putative COMPASS subunits function as a unified complex, contributing to cryptococcal development and virulence.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Autophagy Regulates Fungal Virulence and Sexual Reproduction in Cryptococcus neoformans
    Jiang, Su-Ting
    Chang, An-Ni
    Han, Lian-Tao
    Guo, Jie-Shu
    Li, Yuan-Hong
    Liu, Tong-Bao
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [2] A Predicted Mannoprotein Cmp1 Regulates Fungal Virulence in Cryptococcus neoformans
    Han, Lian-Tao
    Wu, Lei
    Liu, Tong-Bao
    PATHOGENS, 2020, 9 (11): : 1 - 18
  • [3] Intersection of fungal fitness and virulence in Cryptococcus neoformans
    Panepinto, John C.
    Williamson, Peter R.
    FEMS YEAST RESEARCH, 2006, 6 (04) : 489 - 498
  • [4] Zinc Finger Proteins in the Human Fungal Pathogen Cryptococcus neoformans
    Li, Yuan-Hong
    Liu, Tong-Bao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (04)
  • [5] Connecting virulence pathways to cell-cycle progression in the fungal pathogen Cryptococcus neoformans
    Kelliher, Christina M.
    Haase, Steven B.
    CURRENT GENETICS, 2017, 63 (05) : 803 - 811
  • [6] Mechanisms of infection by the human fungal pathogen Cryptococcus neoformans
    Sabiiti, Wilber
    May, Robin C.
    FUTURE MICROBIOLOGY, 2012, 7 (11) : 1297 - 1313
  • [7] Iron acquisition in the human fungal pathogen Cryptococcus neoformans
    Jung, Won Hee
    Do, Eunsoo
    CURRENT OPINION IN MICROBIOLOGY, 2013, 16 (06) : 686 - 691
  • [8] Investigation of Antifungal Mechanisms of Thymol in the Human Fungal Pathogen, Cryptococcus neoformans
    Jung, Kwang-Woo
    Chung, Moon-Soo
    Bai, Hyoung-Woo
    Chung, Byung-Yeoup
    Lee, Sungbeom
    MOLECULES, 2021, 26 (11):
  • [9] Discovery of CO2 tolerance genes associated with virulence in the fungal pathogen Cryptococcus neoformans
    Chadwick, Benjamin J.
    Ristow, Laura C.
    Xie, Xiaofeng
    Krysan, Damian J.
    Lin, Xiaorong
    NATURE MICROBIOLOGY, 2024, 9 (10): : 2684 - 2695
  • [10] Phosphatidylserine synthesis is essential for viability of the human fungal pathogen Cryptococcus neoformans
    Konarzewska, Paulina
    Wang, Yina
    Han, Gil-Soo
    Goh, Kwok Jian
    Gao, Yong-Gui
    Carman, George M.
    Xue, Chaoyang
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (07) : 2329 - 2339