Multiview Robust Graph-Based Clustering for Cancer Subtype Identification

被引:8
作者
Shi, Xiaofeng [1 ]
Liang, Cheng [1 ]
Wang, Hong [1 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Cancer subtyping identification; robust representation learning; graph-based clustering; multi-view learning; multi-omics data; LATENT VARIABLE MODEL; BREAST; JOINT;
D O I
10.1109/TCBB.2022.3143897
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cancer subtype identification is to classify cancer into groups according to their molecular characteristics and clinical manifestations and is the basis for more personalized diagnosis and therapy. Public datasets such as The Cancer Genome Atlas (TCGA) have collected a massive number of multi-omics data. The accumulation of these datasets provides unprecedented opportunities to study the mechanism of cancers and further identify cancer subtypes at a comprehensive level. In this paper, we propose a multi-view robust graph-based clustering (MRGC) method to effectively identify cancer subtypes. Our method first learns robust latent representations from the raw omics data to alleviate the influences of the noise, where a set of similarity matrices are then adaptively learned based on these new representations. Finally, a global similarity graph is obtained by exploiting the consensus structure from the graphs. As a result, the three parts in our method can reinforce each other in a mutual iterative manner. We conduct extensive experiments on both generic machine learning datasets and cancer datasets. The experimental results confirm that our model can achieve satisfactory clustering performance compared to several state-of-the-art approaches. Moreover, we convey the practicability of MRGC by carrying out a case study on hepatocellular carcinoma.
引用
收藏
页码:544 / 556
页数:13
相关论文
共 49 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Sparse Reconstruction of Glucose Fluxes Using Continuous Glucose Monitors [J].
Al-Matouq, Ali Ahmed ;
Laleg-Kirati, Taous-Meriem ;
Novara, Carlo ;
Rabbone, Ivana ;
Vincent, Tyrone .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (05) :1797-1809
[3]  
[Anonymous], 2006, CANC GEN ATL
[4]   Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma [J].
Ally, Adrian ;
Balasundaram, Miruna ;
Carlsen, Rebecca ;
Chuah, Eric ;
Clarke, Amanda ;
Dhalla, Noreen ;
Holt, Robert A. ;
Jones, Steven J. M. ;
Lee, Darlene ;
Ma, Yussanne ;
Marra, Marco A. ;
Mayo, Michael ;
Moore, Richard A. ;
Mungall, Andrew J. ;
Schein, Jacqueline E. ;
Sipahimalani, Payal ;
Tam, Angela ;
Thiessen, Nina ;
Cheung, Dorothy ;
Wong, Tina ;
Brooks, Denise ;
Robertson, A. Gordon ;
Bowlby, Reanne ;
Mungall, Karen ;
Sadeghi, Sara ;
Xi, Liu ;
Covington, Kyle ;
Shinbrot, Eve ;
Wheeler, David A. ;
Gibbs, Richard A. ;
Donehower, Lawrence A. ;
Wang, Linghua ;
Bowen, Jay ;
Gastier-Foster, Julie M. ;
Gerken, Mark ;
Helsel, Carmen ;
Leraas, Kristen M. ;
Lichtenberg, Tara M. ;
Ramirez, Nilsa C. ;
Wise, Lisa ;
Zmuda, Erik ;
Gabriel, Stacey B. ;
Meyerson, Matthew ;
Cibulskis, Carrie ;
Murray, Bradley A. ;
Shih, Juliann ;
Beroukhim, Rameen ;
Cherniack, Andrew D. ;
Schumacher, Steven E. ;
Saksena, Gordon .
CELL, 2017, 169 (07) :1327-+
[5]   Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer [J].
Chaudharyl, Kumardeep ;
Poirionl, Olivier B. ;
Lu, Liangqun ;
Garmire, Lana X. .
CLINICAL CANCER RESEARCH, 2018, 24 (06) :1248-1259
[6]   CEPICS: A Comparison and Evaluation Platform for Integration Methods in Cancer Subtyping [J].
Duan, Ran ;
Gao, Lin ;
Xu, Han ;
Song, Kuo ;
Hu, Yuxuan ;
Wang, Hongda ;
Dong, Yongqiang ;
Zhang, Chenxing ;
Jia, Songwei .
FRONTIERS IN GENETICS, 2019, 10
[7]  
Fanti C, 2004, ADV NEUR IN, V16, P1603
[8]   Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012 [J].
Ferlay, Jacques ;
Soerjomataram, Isabelle ;
Dikshit, Rajesh ;
Eser, Sultan ;
Mathers, Colin ;
Rebelo, Marise ;
Parkin, Donald Maxwell ;
Forman, David ;
Bray, Freddie .
INTERNATIONAL JOURNAL OF CANCER, 2015, 136 (05) :E359-E386
[9]   Metapopulation dynamics and spatial heterogeneity in cancer [J].
González-García, I ;
Solé, RV ;
Costa, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :13085-13089
[10]   Identification of cancer subtypes by integrating multiple types of transcriptomics data with deep learning in breast cancer [J].
Guo, Yang ;
Shang, Xuequn ;
Li, Zhanhuai .
NEUROCOMPUTING, 2019, 324 :20-30