Continuum limits for discrete Dirac operators on 2D square lattices

被引:3
|
作者
Schmidt, Karl Michael [1 ]
Umeda, Tomio [2 ]
机构
[1] Cardiff Univ, Sch Math, Senghennydd Rd, Cardiff CF24 4AG, Wales
[2] Univ Hyogo, Dept Math Sci, Himeji 6712201, Japan
基金
日本学术振兴会;
关键词
Discrete Dirac operators; Dirac operators on square lattices; Discrete Fourier transform; Continuum limits; Spectrum; Complex potentials; SYSTEMS; COEFFICIENTS;
D O I
10.1007/s13324-023-00809-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the continuum limit of discrete Dirac operators on the square lattice in R-2 as the mesh size tends to zero. To this end, we propose the most natural and simplest embedding of l(2)(Z(h)(d)) into L-2(R-d), which enables us to compare the discrete Dirac operators with the continuum Dirac operators in the same Hilbert space L-2(R-2)(2). In particular, we prove that the discrete Dirac operators converge to the continuum Dirac operators in the strong resolvent sense. Potentials are assumed to be bounded and uniformly continuous functions on R-2 and allowed to be complex matrix-valued. We also prove that the discrete Dirac operators do not converge to the continuum Dirac operators in the norm resolvent sense. This is closely related to the observation that the Liouville theorem does not hold in discrete complex analysis.
引用
收藏
页数:36
相关论文
共 50 条
  • [41] Symmetry limits of (D+1)-dimensional Dirac equation with Mobius square potential
    Ikot, Akpan N.
    Yazarloo, B. H.
    Zarrinkamar, S.
    Hassanabadi, H.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (05): : 1 - 10
  • [42] Anderson Localization for 2D Discrete Schrödinger Operators with Random Magnetic Fields
    Frédéric Klopp
    Shu Nakamura
    Fumihiko Nakano
    Yuji Nomura
    Annales Henri Poincaré, 2003, 4 : 795 - 811
  • [44] Dispersion estimates for 2D Dirac equation
    Kopylova, E. A.
    ASYMPTOTIC ANALYSIS, 2013, 84 (1-2) : 35 - 46
  • [45] Discovery of 2D Anisotropic Dirac Cones
    Feng, Baojie
    Zhang, Jin
    Ito, Suguru
    Arita, Masashi
    Cheng, Cai
    Chen, Lan
    Wu, Kehui
    Komori, Fumio
    Sugin, Osamu
    Miyamoto, Koji
    Okuda, Taichi
    Meng, Sheng
    Matsuda, Iwao
    ADVANCED MATERIALS, 2018, 30 (02)
  • [46] The 2D Kramers-Dirac oscillator
    Iwai, T.
    Zhilinskii, B.
    PHYSICS LETTERS A, 2019, 383 (13) : 1389 - 1395
  • [47] Quasiphotons for the Nonstationary 2D Dirac Equation
    Perel M.V.
    Journal of Mathematical Sciences, 2021, 252 (5) : 687 - 694
  • [48] A classification of 2D random Dirac fermions
    Bernard, D
    LeClair, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (11): : 2555 - 2567
  • [49] Topology and applications of 2D Dirac and semi-Dirac materials
    Mondal, Sayan
    Ganguly, Sudin
    Basu, Saurabh
    PHYSICAL SCIENCES REVIEWS, 2022, : 497 - 527
  • [50] ESR in 2D Triangular Chromium Lattices
    Hemmida, M.
    von Nidda, H. -A Krug
    Loidl, A.
    INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009), 2010, 200