Continuum limits for discrete Dirac operators on 2D square lattices

被引:3
|
作者
Schmidt, Karl Michael [1 ]
Umeda, Tomio [2 ]
机构
[1] Cardiff Univ, Sch Math, Senghennydd Rd, Cardiff CF24 4AG, Wales
[2] Univ Hyogo, Dept Math Sci, Himeji 6712201, Japan
基金
日本学术振兴会;
关键词
Discrete Dirac operators; Dirac operators on square lattices; Discrete Fourier transform; Continuum limits; Spectrum; Complex potentials; SYSTEMS; COEFFICIENTS;
D O I
10.1007/s13324-023-00809-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the continuum limit of discrete Dirac operators on the square lattice in R-2 as the mesh size tends to zero. To this end, we propose the most natural and simplest embedding of l(2)(Z(h)(d)) into L-2(R-d), which enables us to compare the discrete Dirac operators with the continuum Dirac operators in the same Hilbert space L-2(R-2)(2). In particular, we prove that the discrete Dirac operators converge to the continuum Dirac operators in the strong resolvent sense. Potentials are assumed to be bounded and uniformly continuous functions on R-2 and allowed to be complex matrix-valued. We also prove that the discrete Dirac operators do not converge to the continuum Dirac operators in the norm resolvent sense. This is closely related to the observation that the Liouville theorem does not hold in discrete complex analysis.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] Semimetal-superfluid quantum phase transitions in 2D and 3D lattices with Dirac points
    Mazzucchi, G.
    Lepori, L.
    Trombettoni, A.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (13)
  • [22] CONTINUUM PERCOLATION OF 2D LENNARD-JONES AND SQUARE-WELL PHASES
    HEYES, DM
    MELROSE, JR
    MOLECULAR PHYSICS, 1989, 68 (02) : 359 - 379
  • [23] Continuum quantum systems as limits of discrete quantum systems. III. Operators
    Barker, L
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (10) : 4653 - 4668
  • [24] Dual-polarization Dirac cones in a simple 2D square lattice photonic crystal
    Rodriguez, J. A.
    Wang, B.
    Cappelli, M. A.
    OPTICS LETTERS, 2020, 45 (09) : 2486 - 2489
  • [25] Anderson localization for 2D discrete Schrodinger operators with random magnetic fields
    Klopp, F
    Nakamura, S
    Nakano, F
    Nomura, Y
    ANNALES HENRI POINCARE, 2003, 4 (04): : 795 - 811
  • [26] Nanofabrication of InGaAsP periodic 2D columns with square and hexagonal lattices by reactive ion etching
    Lee, JM
    Oh, SH
    Lee, CW
    Ko, H
    Park, S
    Kim, KS
    Park, MH
    THIN SOLID FILMS, 2005, 475 (1-2) : 189 - 193
  • [27] Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices
    Jovanovic, D.
    Gajic, R.
    Hingerl, K.
    OPTICS EXPRESS, 2008, 16 (06) : 4048 - 4058
  • [28] 2D Jackiw–Rebbi and trivial localized states in square interfaced binary waveguide lattices
    Tran M.C.
    Doan A.T.
    Nguyen T.X.
    Tran T.X.
    Physica D: Nonlinear Phenomena, 2023, 454
  • [29] Dynamic Magnetic Properties of Two-Dimensional (2d) Classical Square Heisenberg Lattices
    Curely, Jacques
    Kliava, Janis
    2014 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM), 2014, : 17 - 26
  • [30] Transient longitudinal waves in 2D square lattices with Voigt elements under concentrated loading
    Aleksandrova, Nadezhda I.
    WAVE MOTION, 2025, 134