Application and Progress of Artificial Intelligence in Fetal Ultrasound

被引:23
作者
Xiao, Sushan [1 ,2 ,3 ]
Zhang, Junmin [1 ,2 ,3 ]
Zhu, Ye [1 ,2 ,3 ]
Zhang, Zisang [1 ,2 ,3 ]
Cao, Haiyan [1 ,2 ,3 ]
Xie, Mingxing [1 ,2 ,3 ]
Zhang, Li [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Ultrasound Med, Wuhan 430022, Peoples R China
[2] Clin Res Ctr Med Imaging Hubei Prov, Wuhan 430022, Peoples R China
[3] Hubei Prov Key Lab Mol Imaging, Wuhan 430022, Peoples R China
基金
中国国家自然科学基金;
关键词
fetal ultrasound; artificial intelligence; prenatal diagnosis; deep learning; convolution neural network; NAVIGATION ECHOCARDIOGRAPHY FINE; CENTRAL-NERVOUS-SYSTEM; GESTATIONAL-AGE; SONOGRAPHIC EXAMINATION; GUIDELINES; IMAGES;
D O I
10.3390/jcm12093298
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Prenatal ultrasonography is the most crucial imaging modality during pregnancy. However, problems such as high fetal mobility, excessive maternal abdominal wall thickness, and inter-observer variability limit the development of traditional ultrasound in clinical applications. The combination of artificial intelligence (AI) and obstetric ultrasound may help optimize fetal ultrasound examination by shortening the examination time, reducing the physician's workload, and improving diagnostic accuracy. AI has been successfully applied to automatic fetal ultrasound standard plane detection, biometric parameter measurement, and disease diagnosis to facilitate conventional imaging approaches. In this review, we attempt to thoroughly review the applications and advantages of AI in prenatal fetal ultrasound and discuss the challenges and promises of this new field.
引用
收藏
页数:16
相关论文
共 75 条
[51]   International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project [J].
Papageorghiou, Aris T. ;
Ohuma, Eric O. ;
Altman, Douglas G. ;
Todros, Tullia ;
Ismail, Leila Cheikh ;
Lambert, Ann ;
Jaffer, Yasmin A. ;
Bertino, Enrico ;
Gravett, Michael G. ;
Purwar, Manorama ;
Noble, J. Alison ;
Pang, Ruyan ;
Victora, Cesar G. ;
Barros, Fernando C. ;
Carvalho, Maria ;
Salomon, Laurent J. ;
Bhutta, Zulfiqar A. ;
Kennedy, Stephen H. ;
Villar, Jose .
LANCET, 2014, 384 (9946) :869-879
[52]   Accuracy of automated three-dimensional ultrasound imaging technique for fetal head biometry [J].
Pluym, I. D. ;
Afshar, Y. ;
Holliman, K. ;
Kwan, L. ;
Bolagani, A. ;
Mok, T. ;
Silver, B. ;
Ramirez, E. ;
Han, C. S. ;
Platt, L. D. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2021, 57 (05) :798-803
[53]   MobileUNet-FPN: A Semantic Segmentation Model for Fetal Ultrasound Four-Chamber Segmentation in Edge Computing Environments [J].
Pu, Bin ;
Lu, Yuhuan ;
Chen, Jianguo ;
Li, Shengli ;
Zhu, Ningbo ;
Wei, Wei ;
Li, Kenli .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (11) :5540-5550
[54]   Standard Plane Identification in Fetal Brain Ultrasound Scans Using a Differential Convolutional Neural Network [J].
Qu, Ruowei ;
Xu, Guizhi ;
Ding, Chunxia ;
Jia, Wenyan ;
Sun, Mingui .
IEEE ACCESS, 2020, 8 :83821-83830
[55]   Deep Learning-Based Methodology for Recognition of Fetal Brain Standard Scan Planes in 2D Ultrasound Images [J].
Qu, Ruowei ;
Xu, Guizhi ;
Ding, Chunxia ;
Jia, Wenyan ;
Sun, Mingui .
IEEE ACCESS, 2020, 8 :44443-44451
[56]   Automatic detection and measurement of nuchal translucency [J].
Sciortino, Giuseppa ;
Tegolo, Domenico ;
Valenti, Cesare .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 82 :12-20
[57]   Artificial intelligence in ultrasound [J].
Shen, Yu-Ting ;
Chen, Liang ;
Yue, Wen-Wen ;
Xu, Hui-Xiong .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 139
[58]  
Sobhaninia Z, 2019, IEEE ENG MED BIO, P6545, DOI [10.1109/embc.2019.8856981, 10.1109/EMBC.2019.8856981]
[59]   Deep Learning for the Detection of Frames of Interest in Fetal Heart Assessment from First Trimester Ultrasound [J].
Stoean, Ruxandra ;
Iliescu, Dominic ;
Stoean, Catalin ;
Ilie, Vlad ;
Patru, Ciprian ;
Hotoleanu, Mircea ;
Nagy, Rodica ;
Ruican, Dan ;
Trocan, Rares ;
Marcu, Andreea ;
Atencia, Miguel ;
Joya, Gonzalo .
ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 :3-14
[60]   The examiner's ultrasound experience has a significant impact on the detection rate of congenital heart defects at the second-trimester fetal examination [J].
Tegnander, E. ;
Eik-Nes, S. H. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2006, 28 (01) :8-14