Application and Progress of Artificial Intelligence in Fetal Ultrasound

被引:23
作者
Xiao, Sushan [1 ,2 ,3 ]
Zhang, Junmin [1 ,2 ,3 ]
Zhu, Ye [1 ,2 ,3 ]
Zhang, Zisang [1 ,2 ,3 ]
Cao, Haiyan [1 ,2 ,3 ]
Xie, Mingxing [1 ,2 ,3 ]
Zhang, Li [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Ultrasound Med, Wuhan 430022, Peoples R China
[2] Clin Res Ctr Med Imaging Hubei Prov, Wuhan 430022, Peoples R China
[3] Hubei Prov Key Lab Mol Imaging, Wuhan 430022, Peoples R China
基金
中国国家自然科学基金;
关键词
fetal ultrasound; artificial intelligence; prenatal diagnosis; deep learning; convolution neural network; NAVIGATION ECHOCARDIOGRAPHY FINE; CENTRAL-NERVOUS-SYSTEM; GESTATIONAL-AGE; SONOGRAPHIC EXAMINATION; GUIDELINES; IMAGES;
D O I
10.3390/jcm12093298
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Prenatal ultrasonography is the most crucial imaging modality during pregnancy. However, problems such as high fetal mobility, excessive maternal abdominal wall thickness, and inter-observer variability limit the development of traditional ultrasound in clinical applications. The combination of artificial intelligence (AI) and obstetric ultrasound may help optimize fetal ultrasound examination by shortening the examination time, reducing the physician's workload, and improving diagnostic accuracy. AI has been successfully applied to automatic fetal ultrasound standard plane detection, biometric parameter measurement, and disease diagnosis to facilitate conventional imaging approaches. In this review, we attempt to thoroughly review the applications and advantages of AI in prenatal fetal ultrasound and discuss the challenges and promises of this new field.
引用
收藏
页数:16
相关论文
共 75 条
[41]   Diagnostic performance of fetal intelligent navigation echocardiography (FINE) in fetuses with double-outlet right ventricle (DORV) [J].
Ma, Mingming ;
Li, Yuhui ;
Chen, Ran ;
Huang, Chao ;
Mao, Yankai ;
Zhao, Bowen .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2020, 36 (11) :2165-2172
[42]   Sonographic examination of the fetal central nervous system: guidelines for performing the 'basic examination' and the 'fetal neurosonogram' [J].
Malinger, Gustavo ;
Monteagudo, Ana ;
Pilu, Gianluigi ;
Timor-Tritsch, Ilan ;
Toi, Ants .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2007, 29 (01) :109-116
[43]   Semi-automated system for measurement of nuchal translucency thickness [J].
Moratalla, J. ;
Pintoffl, K. ;
Minekawa, R. ;
Lachmann, R. ;
Wright, D. ;
Nicolaides, K. H. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2010, 36 (04) :412-416
[44]   Concordance of the risk of neonatal respiratory morbidity assessed by quantitative ultrasound lung texture analysis in fetuses of twin pregnancies [J].
Moreno-Espinosa, Ana L. ;
Hawkins-Villarreal, Ameth ;
Burgos-Artizzu, Xavier P. ;
Coronado-Gutierrez, David ;
Castelazo, Santiago ;
Lip-Sosa, Diana L. ;
Fuenzalida, Javiera ;
Gallo, Dahiana M. ;
Pena-Ramirez, Tatiana ;
Zuazagoitia, Paula ;
Munoz, Miriam ;
Parra-Cordero, Mauro ;
Gratacos, Eduard ;
Palacio, Montse .
SCIENTIFIC REPORTS, 2022, 12 (01)
[45]   Learning-based prediction of gestational age from ultrasound images of the fetal brain [J].
Namburete, Ana I. L. ;
Stebbing, Richard V. ;
Kemp, Bryn ;
Yaqub, Mohammad ;
Papageorghiou, Aris T. ;
Noble, J. Alison .
MEDICAL IMAGE ANALYSIS, 2015, 21 (01) :72-86
[46]   Automatic fetal biometry prediction using a novel deep convolutional network architecture [J].
Oghli, Mostafa Ghelich ;
Shabanzadeh, Ali ;
Moradi, Shakiba ;
Sirjani, Nasim ;
Gerami, Reza ;
Ghaderi, Payam ;
Taheri, Morteza Sanei ;
Shiri, Isaac ;
Arabi, Hossein ;
Zaidi, Habib .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 88 :127-137
[47]   Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study [J].
Palacio, Montse ;
Bonet-Carne, Elisenda ;
Cobo, Teresa ;
Perez-Moreno, Alvaro ;
Sabria, Joan ;
Richter, Jute ;
Kacerovsky, Marian ;
Jacobsson, Bo ;
Garcia-Posada, Raul A. ;
Bugatto, Fernando ;
Santisteve, Ramon ;
Vives, Angels ;
Parra-Cordero, Mauro ;
Hernandez-Andrade, Edgar ;
Luis Bartha, Jose ;
Carretero-Lucena, Pilar ;
Tan, Kai Lit ;
Cruz-Martinez, Rogelio ;
Burke, Minke ;
Vavilala, Suseela ;
Iruretagoyena, Igor ;
Luis Delgado, Juan ;
Schenone, Mauro ;
Vilanova, Josep ;
Botet, Francesc ;
Yeo, George S. H. ;
Hyett, Jon ;
Deprest, Jan ;
Romero, Roberto ;
Gratacos, Eduard .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2017, 217 (02) :196.e1-196.e14
[48]   Performance of an automatic quantitative ultrasound analysis of the fetal lung to predict fetal lung maturity [J].
Palacio, Montse ;
Cobo, Teresa ;
Martinez-Terron, Monica ;
Ratta, Giuseppe A. ;
Bonet-Carne, Elisenda ;
Amat-Roldan, Ivan ;
Gratacos, Eduard .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2012, 207 (06) :504.e1-504.e5
[49]   ISUOG Practice Guidelines (updated): sonographic examination of the fetal central nervous system. Part 2: performance of targeted neurosonography [J].
Paladini, D. ;
Malinger, G. ;
Birnbaum, R. ;
Monteagudo, A. ;
Pilu, G. ;
Salomon, L. J. ;
Timor-Tritsch, I. E. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2021, 57 (04) :661-671
[50]   Ultrasound-based gestational-age estimation in late pregnancy [J].
Papageorghiou, A. T. ;
Kemp, B. ;
Stones, W. ;
Ohuma, E. O. ;
Kennedy, S. H. ;
Purwar, M. ;
Salomon, L. J. ;
Altman, D. G. ;
Noble, J. A. ;
Bertino, E. ;
Gravett, M. G. ;
Pang, R. ;
Ismail, L. Cheikh ;
Barros, F. C. ;
Lambert, A. ;
Jaffer, Y. A. ;
Victora, C. G. ;
Bhutta, Z. A. ;
Villar, J. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2016, 48 (06) :719-726