Application and Progress of Artificial Intelligence in Fetal Ultrasound

被引:22
作者
Xiao, Sushan [1 ,2 ,3 ]
Zhang, Junmin [1 ,2 ,3 ]
Zhu, Ye [1 ,2 ,3 ]
Zhang, Zisang [1 ,2 ,3 ]
Cao, Haiyan [1 ,2 ,3 ]
Xie, Mingxing [1 ,2 ,3 ]
Zhang, Li [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Ultrasound Med, Wuhan 430022, Peoples R China
[2] Clin Res Ctr Med Imaging Hubei Prov, Wuhan 430022, Peoples R China
[3] Hubei Prov Key Lab Mol Imaging, Wuhan 430022, Peoples R China
基金
中国国家自然科学基金;
关键词
fetal ultrasound; artificial intelligence; prenatal diagnosis; deep learning; convolution neural network; NAVIGATION ECHOCARDIOGRAPHY FINE; CENTRAL-NERVOUS-SYSTEM; GESTATIONAL-AGE; SONOGRAPHIC EXAMINATION; GUIDELINES; IMAGES;
D O I
10.3390/jcm12093298
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Prenatal ultrasonography is the most crucial imaging modality during pregnancy. However, problems such as high fetal mobility, excessive maternal abdominal wall thickness, and inter-observer variability limit the development of traditional ultrasound in clinical applications. The combination of artificial intelligence (AI) and obstetric ultrasound may help optimize fetal ultrasound examination by shortening the examination time, reducing the physician's workload, and improving diagnostic accuracy. AI has been successfully applied to automatic fetal ultrasound standard plane detection, biometric parameter measurement, and disease diagnosis to facilitate conventional imaging approaches. In this review, we attempt to thoroughly review the applications and advantages of AI in prenatal fetal ultrasound and discuss the challenges and promises of this new field.
引用
收藏
页数:16
相关论文
共 75 条
[1]   Artificial Intelligence (AI)-Empowered Echocardiography Interpretation: A State-of-the-Art Review [J].
Akkus, Zeynettin ;
Aly, Yousof H. ;
Attia, Itzhak Z. ;
Lopez-Jimenez, Francisco ;
Arruda-Olson, Adelaide M. ;
Pellikka, Patricia A. ;
Pislaru, Sorin, V ;
Kane, Garvan C. ;
Friedman, Paul A. ;
Oh, Jae K. .
JOURNAL OF CLINICAL MEDICINE, 2021, 10 (07)
[2]   A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence-Powered Ultrasound for Improving Clinical Workflow [J].
Akkus, Zeynettin ;
Cai, Jason ;
Boonrod, Arunnit ;
Zeinoddini, Atefeh ;
Weston, Alexander D. ;
Philbrick, Kenneth A. ;
Erickson, Bradley J. .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2019, 16 (09) :1318-1328
[3]   Learning deep architectures for the interpretation of first-trimester fetal echocardiography (LIFE)-a study protocol for developing an automated intelligent decision support system for early fetal echocardiography [J].
Anda, Ungureanu ;
Andreea-Sorina, Marcu ;
Laurentiu, Patru Ciprian ;
Dan, Ruican ;
Rodica, Nagy ;
Ruxandra, Stoean ;
Catalin, Stoean ;
Iliescu, Dominic Gabriel .
BMC PREGNANCY AND CHILDBIRTH, 2023, 23 (01)
[4]   An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease [J].
Arnaout, Rima ;
Curran, Lara ;
Zhao, Yili ;
Levine, Jami C. ;
Chinn, Erin ;
Moon-Grady, Anita J. .
NATURE MEDICINE, 2021, 27 (05) :882-+
[5]   Quantitative ultrasound texture analysis of fetal lungs to predict neonatal respiratory morbidity [J].
Bonet-Carne, E. ;
Palacio, M. ;
Cobo, T. ;
Perez-Moreno, A. ;
Lopez, M. ;
Piraquive, J. P. ;
Ramirez, J. C. ;
Botet, F. ;
Marques, F. ;
Gratacos, E. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2015, 45 (04) :427-433
[6]   Automated annotation and quantitative description of ultrasound videos of the fetal heart [J].
Bridge, Christopher P. ;
Ioannou, Christos ;
Noble, J. Alison .
MEDICAL IMAGE ANALYSIS, 2017, 36 :147-161
[7]   Analysis of maturation features in fetal brain ultrasound via artificial intelligence for the estimation of gestational age [J].
Burgos-Artizzu, Xavier P. ;
Coronado-Gutierrez, David ;
Valenzuela-Alcaraz, Brenda ;
Vellve, Kilian ;
Eixarch, Elisenda ;
Crispi, Fatima ;
Bonet-Carne, Elisenda ;
Bennasar, Mar ;
Gratacos, Eduard .
AMERICAN JOURNAL OF OBSTETRICS & GYNECOLOGY MFM, 2021, 3 (06)
[8]   Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree [J].
Carneiro, Gustavo ;
Georaescu, Bogdan ;
Good, Sara ;
Comaniciu, Dorin .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (09) :1342-1355
[9]   Ultrasound Standard Plane Detection Using a Composite Neural Network Framework [J].
Chen, Hao ;
Wu, Lingyun ;
Dou, Qi ;
Qin, Jing ;
Li, Shengli ;
Cheng, Jie-Zhi ;
Ni, Dong ;
Heng, Pheng-Ann .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (06) :1576-1586
[10]   Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks [J].
Chen, Hao ;
Ni, Dong ;
Qin, Jing ;
Li, Shengli ;
Yang, Xin ;
Wang, Tianfu ;
Heng, Pheng Ann .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (05) :1627-1636