Clinical approaches for integrating machine learning for patients with lymphoma: Current strategies and future perspectives

被引:3
|
作者
Chihara, Dai [1 ]
Nastoupil, Loretta J. [1 ]
Flowers, Christopher R. [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Lymphoma & Myeloma, Houston, TX 77030 USA
关键词
algorithm(s); artificial intelligence; lymphoma; machine learning; neural networks; HEALTH-ORGANIZATION CLASSIFICATION; METABOLIC TUMOR VOLUME; T-CELL LYMPHOMA; ARTIFICIAL-INTELLIGENCE; FOLLICULAR LYMPHOMA; HODGKINS-LYMPHOMA; PROGNOSTIC MODEL; SURVIVAL MODELS; FINAL PATHOLOGY; LINE;
D O I
10.1111/bjh.18861
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Machine learning (ML) approaches have been applied in the diagnosis and prediction of haematological malignancies. The consideration of ML algorithms to complement or replace current standard of care approaches requires investigation into the methods used to develop relevant algorithms and understanding the accuracy, sensitivity and specificity of such algorithms in the diagnosis and prognosis of malignancies. Here we discuss methods used to develop ML algorithms and review original research studies for assessing the use of ML algorithms in the diagnosis and prognosis of lymphoma.
引用
收藏
页码:219 / 229
页数:11
相关论文
共 50 条
  • [31] Current approaches and future perspectives for advanced-stage follicular lymphoma with a low tumor burden
    Fukuhara, Noriko
    Ishizawa, Kenichi
    JAPANESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 49 (04) : 306 - 310
  • [32] Machine learning in TCM with natural products and molecules: current status and future perspectives
    Suya Ma
    Jinlei Liu
    Wenhua Li
    Yongmei Liu
    Xiaoshan Hui
    Peirong Qu
    Zhilin Jiang
    Jun Li
    Jie Wang
    Chinese Medicine, 18
  • [33] Management of incidental pulmonary nodules: current strategies and future perspectives
    Kim, Tae Jung
    Kim, Cho Hee
    Lee, Ho Yun
    Chung, Myung Jin
    Shin, Sun Hye
    Lee, Kyung Jong
    Lee, Kyung Soo
    EXPERT REVIEW OF RESPIRATORY MEDICINE, 2020, 14 (02) : 173 - 194
  • [34] Current Applications of Machine Learning in Spine: From Clinical View
    Ren, GuanRui
    Yu, Kun
    Xie, ZhiYang
    Wang, PeiYang
    Zhang, Wei
    Huang, Yong
    Wang, YunTao
    Wu, XiaoTao
    GLOBAL SPINE JOURNAL, 2022, 12 (08) : 1827 - 1840
  • [35] Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management-Current Trends and Future Perspectives
    Tataru, Octavian Sabin
    Vartolomei, Mihai Dorin
    Rassweiler, Jens J.
    Virgil, Osan
    Lucarelli, Giuseppe
    Porpiglia, Francesco
    Amparore, Daniele
    Manfredi, Matteo
    Carrieri, Giuseppe
    Falagario, Ugo
    Terracciano, Daniela
    de Cobelli, Ottavio
    Busetto, Gian Maria
    Del Giudice, Francesco
    Ferro, Matteo
    DIAGNOSTICS, 2021, 11 (02)
  • [36] Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review
    Antoniadi, Anna Markella
    Du, Yuhan
    Guendouz, Yasmine
    Wei, Lan
    Mazo, Claudia
    Becker, Brett A.
    Mooney, Catherine
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [37] Combating Covid-19 using machine learning and deep learning: Applications, challenges, and future perspectives
    Paul, Showmick Guha
    Saha, Arpa
    Biswas, Al Amin
    Zulfiker, Md. Sabab
    Arefin, Mohammad Shamsul
    Rahman, Md. Mahfujur
    Reza, Ahmed Wasif
    ARRAY, 2023, 17
  • [38] Current Applications and Future Impact of Machine Learning in Radiology
    Choy, Garry
    Khalilzadeh, Omid
    Michalski, Mark
    Do, Synho
    Samir, Anthony E.
    Pianykh, Oleg S.
    Geis, J. Raymond
    Pandharipande, Pari V.
    Brink, James A.
    Dreyer, Keith J.
    RADIOLOGY, 2018, 288 (02) : 318 - 328
  • [39] Machine Learning Approaches for Integrating Clinical and Radiographic Data in the Early Detection of Osteonecrosis of the Jaw
    Anzabi, Reza Mahmoudi
    Badkoobeh, Ashkan
    Nabian, Majid
    Shenasa, Naghmeh
    Khayami, Zahra
    Mohammadikhah, Meysam
    Diznab, Fatemeh Abedi
    GALEN MEDICAL JOURNAL, 2024, 13
  • [40] The role of machine learning in clinical research: transforming the future of evidence generation
    Weissler, E. Hope
    Naumann, Tristan
    Andersson, Tomas
    Ranganath, Rajesh
    Elemento, Olivier
    Luo, Yuan
    Freitag, Daniel F.
    Benoit, James
    Hughes, Michael C.
    Khan, Faisal
    Slater, Paul
    Shameer, Khader
    Roe, Matthew
    Hutchison, Emmette
    Kollins, Scott H.
    Broedl, Uli
    Meng, Zhaoling
    Wong, Jennifer L.
    Curtis, Lesley
    Huang, Erich
    Ghassemi, Marzyeh
    TRIALS, 2021, 22 (01)