Clinical approaches for integrating machine learning for patients with lymphoma: Current strategies and future perspectives

被引:3
|
作者
Chihara, Dai [1 ]
Nastoupil, Loretta J. [1 ]
Flowers, Christopher R. [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Lymphoma & Myeloma, Houston, TX 77030 USA
关键词
algorithm(s); artificial intelligence; lymphoma; machine learning; neural networks; HEALTH-ORGANIZATION CLASSIFICATION; METABOLIC TUMOR VOLUME; T-CELL LYMPHOMA; ARTIFICIAL-INTELLIGENCE; FOLLICULAR LYMPHOMA; HODGKINS-LYMPHOMA; PROGNOSTIC MODEL; SURVIVAL MODELS; FINAL PATHOLOGY; LINE;
D O I
10.1111/bjh.18861
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Machine learning (ML) approaches have been applied in the diagnosis and prediction of haematological malignancies. The consideration of ML algorithms to complement or replace current standard of care approaches requires investigation into the methods used to develop relevant algorithms and understanding the accuracy, sensitivity and specificity of such algorithms in the diagnosis and prognosis of malignancies. Here we discuss methods used to develop ML algorithms and review original research studies for assessing the use of ML algorithms in the diagnosis and prognosis of lymphoma.
引用
收藏
页码:219 / 229
页数:11
相关论文
共 50 条
  • [21] Machine learning & conventional approaches to process control & optimization: Industrial applications & perspectives
    Raven, Douglas B.
    Chikkula, Yugender
    Patel, Kalpesh M.
    Al Ghazal, Abdullah H.
    Salloum, Hussain S.
    Bakhurji, Ammar S.
    Patwardhan, Rohit S.
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 189
  • [22] Advancements in Dentistry with Artificial Intelligence: Current Clinical Applications and Future Perspectives
    Fatima, Anum
    Shafi, Imran
    Afzal, Hammad
    De La Torre Diez, Isabel
    Lourdes, Del Rio-Sola M.
    Brenosa, Jose
    Martinez Espinosa, Julio Cesar
    Ashraf, Imran
    HEALTHCARE, 2022, 10 (11)
  • [23] Digital Innovation Enabled Nanomaterial Manufacturing; Machine Learning Strategies and Green Perspectives
    Konstantopoulos, Georgios
    Koumoulos, Elias P.
    Charitidis, Costas A.
    NANOMATERIALS, 2022, 12 (15)
  • [24] Has the Future Started? The Current Growth of Artificial Intelligence, Machine Learning, and Deep Learning
    Aggarwal K.
    Mijwil M.M.
    Sonia
    Al-Mistarehi A.-H.
    Alomari S.
    Gök M.
    Zein Alaabdin A.M.
    Abdulrhman S.H.
    Iraqi Journal for Computer Science and Mathematics, 2022, 3 (01): : 115 - 123
  • [25] Machine learning and its current and future applications in the management of vitreoretinal disorders
    Menia, Nitin Kumar
    Diwan, Saumya
    Mehndiratta, Amit
    Venkatesh, Pradeep
    EXPERT REVIEW OF OPHTHALMOLOGY, 2024, 19 (03) : 227 - 242
  • [26] Machine Learning in Pediatric Healthcare: Current Trends, Challenges, and Future Directions
    Ganatra, Hammad A.
    JOURNAL OF CLINICAL MEDICINE, 2025, 14 (03)
  • [27] Current works and Future directions on Application of Machine Learning in Primary Care
    Abbasgholizadeh-Rahimi, Samira
    Granikov, Vera
    Pluye, Pierre
    AUGMENTED HUMAN 2020: PROCEEDINGS OF THE 11TH AUGMENTED HUMAN INTERNATIONAL CONFERENCE, 2020,
  • [28] Machine learning approaches for active queue management: A survey, taxonomy, and future directions
    Toopchinezhad, Mohammad Parsa
    Ahmadi, Mahmood
    COMPUTER NETWORKS, 2025, 262
  • [29] Machine learning for clinical decision support in infectious diseases: a narrative review of current applications
    Peiffer-Smadja, N.
    Rawson, T. M.
    Ahmad, R.
    Buchard, A.
    Pantelis, G.
    Lescure, F-X
    Birgand, G.
    Holmes, A. H.
    CLINICAL MICROBIOLOGY AND INFECTION, 2020, 26 (05) : 584 - 595
  • [30] The Use of Machine Learning in MicroRNA Diagnostics: Current Perspectives
    Christou, Chrysanthos D.
    Mitsas, Angelos C.
    Vlachavas, Ioannis
    Tsoulfas, Georgios
    MICRORNA, 2022, 11 (03) : 175 - 184