Deep Learning-Based Hybrid Precoding for Terahertz Massive MIMO Communication With Beam Squint

被引:21
|
作者
Yuan, Qijiang [1 ,2 ]
Liu, Hui [3 ]
Xu, Mingfeng [3 ]
Wu, Yezeng [1 ,2 ]
Xiao, Lixia [1 ,2 ]
Jiang, Tao [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Res Ctr 6G Mobile Commun, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] China Acad Informat & Commun Technol, Mobile Commun Innovat Ctr, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
Radio frequency; Precoding; Wideband; Antenna arrays; Estimation error; Channel estimation; Broadband antennas; THz; hybrid precoding; beam squint; massive MIMO; deep learning; SYSTEMS;
D O I
10.1109/LCOMM.2022.3211514
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, a wideband hybrid precoding network (WHPC-Net) based on deep learning is designed for Terahertz (THz) massive multiple input multiple output (MIMO) system in the face of beam squint. Firstly, the channel state information (CSI) is preprocessed by calculating the mean channel covariance matrix (MCCM). Next, the analog precoder can be calculated based on the analog precoding sub-network (APC-Net) using the information of the MCCM. Finally, the digital precoder will be obtained with the aid of the digital precoding subnetwork (DPC-Net), employing the related outputs of the APC-Net and the MCCM. Simulation results show that the proposed WHPC-Net is more robust to the beam squint over the existing traditional hybrid precoders. For the case of imperfect CSI, the proposed WHPC-Net even is capable of achieving a higher sum rate than the full-digital precoder based on singular value decomposition.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 50 条
  • [41] Spatially Sparse Precoding in Wideband Hybrid Terahertz Massive MIMO Systems
    Gao, Jiabao
    Zhong, Caijun
    Li, Geoffrey Ye
    Soriaga, Joseph B.
    Behboodi, Arash
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (03) : 1871 - 1885
  • [42] Framework on Deep Learning-Based Joint Hybrid Processing for mmWave Massive MIMO Systems
    Dong, Peihao
    Zhang, Hua
    Li, Geoffrey Ye
    IEEE ACCESS, 2020, 8 : 106023 - 106035
  • [43] Model-Driven Deep Learning for Massive Multiuser MIMO Constant Envelope Precoding
    He, Yunfeng
    He, Hengtao
    Wen, Chao-Kai
    Jin, Shi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (11) : 1835 - 1839
  • [44] Hybrid Precoding and Combining for Millimeter Wave/Sub-THz MIMO-OFDM Systems With Beam Squint Effects
    Wan, Qian
    Fang, Jun
    Chen, Zhi
    Li, Hongbin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (08) : 8314 - 8319
  • [45] Deep Learning for Channel Sensing and Hybrid Precoding in TDD Massive MIMO OFDM Systems
    Attiah, Kareem M.
    Sohrabi, Foad
    Yu, Wei
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (12) : 10839 - 10853
  • [46] Wideband Cell-Free mmWave Massive MIMO-OFDM: Beam Squint-Aware Channel Covariance-Based Hybrid Beamforming
    Femenias, Guillem
    Riera-Palou, Felip
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (07) : 4695 - 4710
  • [47] Deep Learning-Based CSI Feedback for Terahertz Ultra-Massive MIMO Systems
    Li, Yuling
    Guo, Aihuang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (08) : 1413 - 1416
  • [48] Hybrid Beamforming for Terahertz Wireless Communications with Beam Squint: A Survey
    Wu, Yezeng
    Xiao, Lixia
    Liu, Guanghua
    Jiang, Tao
    CHINESE JOURNAL OF ELECTRONICS, 2022, 31 (06) : 1043 - 1052
  • [49] A Block Sparsity Based Estimator for mmWave Massive MIMO Channels With Beam Squint
    Wang, Mingjin
    Gao, Feifei
    Shlezinger, Nir
    Flanagan, Mark F.
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 (68) : 49 - 64
  • [50] SLNR-Based Beamspace Precoding and Beam Selection for Wideband mmWave Massive MIMO
    Cheng, Zhenqiao
    Wei, Zaixue
    Li, Hu
    Yang, Hongwen
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (02) : 478 - 482