Deep Learning-Based Hybrid Precoding for Terahertz Massive MIMO Communication With Beam Squint

被引:21
|
作者
Yuan, Qijiang [1 ,2 ]
Liu, Hui [3 ]
Xu, Mingfeng [3 ]
Wu, Yezeng [1 ,2 ]
Xiao, Lixia [1 ,2 ]
Jiang, Tao [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Res Ctr 6G Mobile Commun, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] China Acad Informat & Commun Technol, Mobile Commun Innovat Ctr, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
Radio frequency; Precoding; Wideband; Antenna arrays; Estimation error; Channel estimation; Broadband antennas; THz; hybrid precoding; beam squint; massive MIMO; deep learning; SYSTEMS;
D O I
10.1109/LCOMM.2022.3211514
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, a wideband hybrid precoding network (WHPC-Net) based on deep learning is designed for Terahertz (THz) massive multiple input multiple output (MIMO) system in the face of beam squint. Firstly, the channel state information (CSI) is preprocessed by calculating the mean channel covariance matrix (MCCM). Next, the analog precoder can be calculated based on the analog precoding sub-network (APC-Net) using the information of the MCCM. Finally, the digital precoder will be obtained with the aid of the digital precoding subnetwork (DPC-Net), employing the related outputs of the APC-Net and the MCCM. Simulation results show that the proposed WHPC-Net is more robust to the beam squint over the existing traditional hybrid precoders. For the case of imperfect CSI, the proposed WHPC-Net even is capable of achieving a higher sum rate than the full-digital precoder based on singular value decomposition.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 50 条
  • [31] Low-complexity unsupervised learning-based hybrid precoding for massive MIMO systems
    Liu, Xiang
    IET COMMUNICATIONS, 2023, 17 (15) : 1773 - 1779
  • [32] Training-Based Hybrid Precoding Scheme for Multiuser Massive MIMO-OFDM
    Sun, Yiwei
    Wang, Hua
    Yuan, Minghao
    Zhu, Tianye
    Kawoya, Agnes
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (11) : 3729 - 3732
  • [33] Machine Learning-based Hybrid Precoding with Robust Error for UAV mmWave Massive MIMO
    Ren, Huan
    Li, Lixin
    Xu, Wenjun
    Chen, Wei
    Han, Zhu
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [34] Wideband Beamforming for Hybrid Massive MIMO Terahertz Communications
    Gao, Feifei
    Wang, Bolei
    Xing, Chengwen
    An, Jianping
    Li, Geoffrey Ye
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (06) : 1725 - 1740
  • [35] Deep Learning-Based Hybrid Precoding Approach in the Massive Multiple-Input Multiple-Output System
    Ramanathan, Srividhya
    Maria, Anto Bennet
    IETE JOURNAL OF RESEARCH, 2024, 70 (10) : 7648 - 7669
  • [36] Deep Learning-Based Massive MIMO CSI Feedback
    Li, Jialing
    Zhang, Qi
    Xin, Xiangjun
    Tao, Ying
    Tian, Qinghua
    Tian, Feng
    Chen, Dong
    Shen, Yufei
    Cao, Guixing
    Gao, Zihe
    Qian, Jinxi
    2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2019,
  • [37] Channel Estimation for UAV-based mmWave Massive MIMO Communications with Beam Squint
    Vlachos, Evangelos
    Mavrokefalidis, Christos
    Berberidis, Kostas
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1696 - 1700
  • [38] Deep Learning-based Channel Estimation for Massive MIMO-OTFS Communication Systems
    Payami, Mostafa
    Blostein, Steven D.
    2024 WIRELESS TELECOMMUNICATIONS SYMPOSIUM, WTS, 2024,
  • [39] Overview of Deep Learning-Based CSI Feedback in Massive MIMO Systems
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) : 8017 - 8045
  • [40] Deep learning-based massive MIMO channel estimation with reduced feedback
    Sadeghi, Nasser
    Azghani, Masoumeh
    DIGITAL SIGNAL PROCESSING, 2023, 137