Deep Learning-Based Hybrid Precoding for Terahertz Massive MIMO Communication With Beam Squint

被引:21
|
作者
Yuan, Qijiang [1 ,2 ]
Liu, Hui [3 ]
Xu, Mingfeng [3 ]
Wu, Yezeng [1 ,2 ]
Xiao, Lixia [1 ,2 ]
Jiang, Tao [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Res Ctr 6G Mobile Commun, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] China Acad Informat & Commun Technol, Mobile Commun Innovat Ctr, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
Radio frequency; Precoding; Wideband; Antenna arrays; Estimation error; Channel estimation; Broadband antennas; THz; hybrid precoding; beam squint; massive MIMO; deep learning; SYSTEMS;
D O I
10.1109/LCOMM.2022.3211514
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, a wideband hybrid precoding network (WHPC-Net) based on deep learning is designed for Terahertz (THz) massive multiple input multiple output (MIMO) system in the face of beam squint. Firstly, the channel state information (CSI) is preprocessed by calculating the mean channel covariance matrix (MCCM). Next, the analog precoder can be calculated based on the analog precoding sub-network (APC-Net) using the information of the MCCM. Finally, the digital precoder will be obtained with the aid of the digital precoding subnetwork (DPC-Net), employing the related outputs of the APC-Net and the MCCM. Simulation results show that the proposed WHPC-Net is more robust to the beam squint over the existing traditional hybrid precoders. For the case of imperfect CSI, the proposed WHPC-Net even is capable of achieving a higher sum rate than the full-digital precoder based on singular value decomposition.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 50 条
  • [21] Deep Learning based Multi-User Power Allocation and Hybrid Precoding in Massive MIMO Systems
    Koc, Asil
    Wang, Mike
    Le-Ngoc, Tho
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5487 - 5492
  • [22] Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems: A Deep Learning Approach
    Elbir, Ahmet M.
    Papazafeiropoulos, Anastasios K.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (01) : 552 - 563
  • [23] Beam Squint and Channel Estimation for Wideband mmWave Massive MIMO-OFDM Systems
    Wang, Bolei
    Jian, Mengnan
    Gao, Feifei
    Li, Geoffrey Ye
    Lin, Hai
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (23) : 5893 - 5908
  • [24] Hybrid Precoding for Mitigating the Beam Squint in Wideband mmWave MIMO System
    Gao, Yin
    Hu, Haoquan
    Chen, Bo
    Tian, Jing
    Lei, Shiwen
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (03) : 602 - 606
  • [25] A Novel Transceiver Design in Wideband Massive MIMO for Beam Squint Minimization
    Afeef, Liza
    Kihero, Abuu B.
    Arslan, Huseyin
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (07) : 4509 - 4522
  • [26] Deep Learning-Based Implicit CSI Feedback in Massive MIMO
    Chen, Muhan
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    Yang, Ang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 935 - 950
  • [27] Multi-Task Deep Learning Based Hybrid Precoding for mmWave Massive MIMO System
    Li, Zhongjie
    Gao, Wei
    Zhang, Min
    Xiong, Jiyuan
    CHINA COMMUNICATIONS, 2021, 18 (10) : 96 - 106
  • [28] Deep Learning-Based Channel Estimation for Wideband Hybrid MmWave Massive MIMO
    Gao, Jiabao
    Zhong, Caijun
    Li, Geoffrey Ye
    Soriaga, Joseph B.
    Behboodi, Arash
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (06) : 3679 - 3693
  • [29] Integrated Sensing and Communications With Joint Beam-Squint and Beam-Split for mmWave/THz Massive MIMO
    Gao, Feifei
    Xu, Liangyuan
    Ma, Shaodan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (05) : 2963 - 2976
  • [30] One-Bit Massive MIMO Precoding Using Unsupervised Deep Learning
    Hosseinzadeh, Mohsen
    Aghaeinia, Hassan
    Kazemi, Mohammad
    IEEE ACCESS, 2024, 12 : 34668 - 34680