Deep Learning-Based Hybrid Precoding for Terahertz Massive MIMO Communication With Beam Squint

被引:21
|
作者
Yuan, Qijiang [1 ,2 ]
Liu, Hui [3 ]
Xu, Mingfeng [3 ]
Wu, Yezeng [1 ,2 ]
Xiao, Lixia [1 ,2 ]
Jiang, Tao [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Res Ctr 6G Mobile Commun, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] China Acad Informat & Commun Technol, Mobile Commun Innovat Ctr, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
Radio frequency; Precoding; Wideband; Antenna arrays; Estimation error; Channel estimation; Broadband antennas; THz; hybrid precoding; beam squint; massive MIMO; deep learning; SYSTEMS;
D O I
10.1109/LCOMM.2022.3211514
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, a wideband hybrid precoding network (WHPC-Net) based on deep learning is designed for Terahertz (THz) massive multiple input multiple output (MIMO) system in the face of beam squint. Firstly, the channel state information (CSI) is preprocessed by calculating the mean channel covariance matrix (MCCM). Next, the analog precoder can be calculated based on the analog precoding sub-network (APC-Net) using the information of the MCCM. Finally, the digital precoder will be obtained with the aid of the digital precoding subnetwork (DPC-Net), employing the related outputs of the APC-Net and the MCCM. Simulation results show that the proposed WHPC-Net is more robust to the beam squint over the existing traditional hybrid precoders. For the case of imperfect CSI, the proposed WHPC-Net even is capable of achieving a higher sum rate than the full-digital precoder based on singular value decomposition.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 50 条
  • [21] Deep Learning-Based AMP for Massive MIMO Detection
    Yang, Yang
    Chen, Shaoping
    Gao, Xiqi
    CHINA COMMUNICATIONS, 2022, 19 (10) : 69 - 77
  • [22] Deep Learning-Based AMP for Massive MIMO Detection
    Yang Yang
    Shaoping Chen
    Xiqi Gao
    ChinaCommunications, 2022, 19 (10) : 69 - 77
  • [23] Deep Learning-Based Massive MIMO CSI Feedback
    Li, Jialing
    Zhang, Qi
    Xin, Xiangjun
    Tao, Ying
    Tian, Qinghua
    Tian, Feng
    Chen, Dong
    Shen, Yufei
    Cao, Guixing
    Gao, Zihe
    Qian, Jinxi
    2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2019,
  • [24] Hybrid Precoding for WideBand Millimeter Wave MIMO Systems in the Face of Beam Squint
    Chen, Yun
    Xiong, Yifeng
    Chen, Da
    Jiang, Tao
    Ng, Soon Xin
    Hanzo, Lajos
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (03) : 1847 - 1860
  • [25] Deep Learning-Based Channel Prediction for LEO Satellite Massive MIMO Communication System
    Zhang, Yunyang
    Wu, Yulun
    Liu, Aijun
    Xia, Xiaochen
    Pan, Ting
    Liu, Xian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (08) : 1835 - 1839
  • [26] Deep Learning-based Channel Estimation for Massive MIMO-OTFS Communication Systems
    Payami, Mostafa
    Blostein, Steven D.
    2024 WIRELESS TELECOMMUNICATIONS SYMPOSIUM, WTS, 2024,
  • [27] Spatially Sparse Precoding in Wideband Hybrid Terahertz Massive MIMO Systems
    Gao, Jiabao
    Zhong, Caijun
    Li, Geoffrey Ye
    Soriaga, Joseph B.
    Behboodi, Arash
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (03) : 1871 - 1885
  • [28] Deep Learning based Multi-User Power Allocation and Hybrid Precoding in Massive MIMO Systems
    Koc, Asil
    Wang, Mike
    Le-Ngoc, Tho
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5487 - 5492
  • [29] Framework on Deep Learning-Based Joint Hybrid Processing for mmWave Massive MIMO Systems
    Dong, Peihao
    Zhang, Hua
    Li, Geoffrey Ye
    IEEE ACCESS, 2020, 8 : 106023 - 106035
  • [30] Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems: A Deep Learning Approach
    Elbir, Ahmet M.
    Papazafeiropoulos, Anastasios K.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (01) : 552 - 563