Deep Learning-Based Hybrid Precoding for Terahertz Massive MIMO Communication With Beam Squint

被引:25
作者
Yuan, Qijiang [1 ,2 ]
Liu, Hui [3 ]
Xu, Mingfeng [3 ]
Wu, Yezeng [1 ,2 ]
Xiao, Lixia [1 ,2 ]
Jiang, Tao [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Res Ctr 6G Mobile Commun, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] China Acad Informat & Commun Technol, Mobile Commun Innovat Ctr, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
Radio frequency; Precoding; Wideband; Antenna arrays; Estimation error; Channel estimation; Broadband antennas; THz; hybrid precoding; beam squint; massive MIMO; deep learning; SYSTEMS;
D O I
10.1109/LCOMM.2022.3211514
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, a wideband hybrid precoding network (WHPC-Net) based on deep learning is designed for Terahertz (THz) massive multiple input multiple output (MIMO) system in the face of beam squint. Firstly, the channel state information (CSI) is preprocessed by calculating the mean channel covariance matrix (MCCM). Next, the analog precoder can be calculated based on the analog precoding sub-network (APC-Net) using the information of the MCCM. Finally, the digital precoder will be obtained with the aid of the digital precoding subnetwork (DPC-Net), employing the related outputs of the APC-Net and the MCCM. Simulation results show that the proposed WHPC-Net is more robust to the beam squint over the existing traditional hybrid precoders. For the case of imperfect CSI, the proposed WHPC-Net even is capable of achieving a higher sum rate than the full-digital precoder based on singular value decomposition.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 21 条
[1]   Hybrid Precoding for WideBand Millimeter Wave MIMO Systems in the Face of Beam Squint [J].
Chen, Yun ;
Xiong, Yifeng ;
Chen, Da ;
Jiang, Tao ;
Ng, Soon Xin ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (03) :1847-1860
[2]   Channel-Covariance and Angle-of-Departure Aided Hybrid Precoding for Wideband Multiuser Millimeter Wave MIMO Systems [J].
Chen, Yun ;
Chen, Da ;
Jiang, Tao ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (12) :8315-8328
[3]   Millimeter-Wave Massive MIMO Systems Relying on Generalized Sub-Array-Connected Hybrid Precoding [J].
Chen, Yun ;
Chen, Da ;
Jiang, Tao ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (09) :8940-8950
[4]   Delay-Phase Precoding for Wideband THz Massive MIMO [J].
Dai, Linglong ;
Tan, Jingbo ;
Chen, Zhi ;
Poor, H. Vincent .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) :7271-7286
[5]   Spatially Sparse Precoding in Millimeter Wave MIMO Systems [J].
El Ayach, Omar ;
Rajagopal, Sridhar ;
Abu-Surra, Shadi ;
Pi, Zhouyue ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (03) :1499-1513
[6]   Terahertz-Band Joint Ultra-Massive MIMO Radar-Communications: Model-Based and Model-Free Hybrid Beamforming [J].
Elbir, Ahmet M. ;
Mishra, Kumar Vijay ;
Chatzinotas, Symeon .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (06) :1468-1483
[7]   Data-Driven Deep Learning Based Hybrid Beamforming for Aerial Massive MIMO-OFDM Systems With Implicit CSI [J].
Gao, Zhen ;
Wu, Minghui ;
Hu, Chun ;
Gao, Feifei ;
Wen, Guanghui ;
Zheng, Dezhi ;
Zhang, Jun .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (10) :2894-2913
[8]   Multi-User Analog Beamforming in Millimeter Wave MIMO Systems Based on Path Angle Information [J].
Jiang, Lisi ;
Jafarkhani, Hamid .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (01) :608-619
[9]   Beamforming Design for Large-Scale Antenna Arrays Using Deep Learning [J].
Lin, Tian ;
Zhu, Yu .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (01) :103-107
[10]   Two-Stage Hybrid Precoding for Minimizing Residuals Using Convolutional Neural Network [J].
Liu, Fulai ;
Zhang, Lijie ;
Du, Ruiyan ;
Li, Dan ;
Li, Tiangui .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (12) :3903-3907