One-Pot Synthesis of Melamine Formaldehyde Resin-Derived N-Doped Porous Carbon for CO2 Capture Application

被引:45
|
作者
Yu, Qiyun [1 ]
Bai, Jiali [1 ]
Huang, Jiamei [1 ]
Demir, Muslum [2 ,3 ]
Farghaly, Ahmed A. [4 ,5 ,6 ]
Aghamohammadi, Parya [2 ]
Hu, Xin [1 ]
Wang, Linlin [7 ]
机构
[1] Zhejiang Normal Univ, Minist Educ Adv Catalysis Mat, Key Lab, Jinhua 321004, Peoples R China
[2] Osmaniye Korkut Ata Univ, Dept Chem Engn, TR-80000 Osmaniye, Turkiye
[3] TUBITAK Marmara Res Ctr, Mat Inst, TR-41470 Gebze, Turkiye
[4] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[5] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[6] Assiut Univ, Fac Sci, Chem Dept, Assiut 71516, Egypt
[7] Zhejiang Normal Univ, Coll Engn, Key Lab Urban Rail Transit Intelligent Operat & M, Jinhua 321004, Peoples R China
来源
MOLECULES | 2023年 / 28卷 / 04期
关键词
N-rich porous carbons; CO2; adsorption; KOH activation; single-step reaction; ORGANIC FRAMEWORKS; DIOXIDE; ADSORPTION; PERFORMANCE; ADSORBENTS; CAPACITY; CHITOSAN; HYDROGEN; STORAGE;
D O I
10.3390/molecules28041772
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The design and synthesis of porous carbons for CO2 adsorption have attracted tremendous interest owing to the ever-soaring concerns regarding climate change and global warming. Herein, for the first time, nitrogen-rich porous carbon was prepared with chemical activation (KOH) of commercial melamine formaldehyde resin (MF) in a single step. It has been shown that the porosity parameters of the as-prepared carbons were successfully tuned by controlling the activating temperature and adjusting the amount of KOH. Thus, as-prepared N-rich porous carbon shows a large surface area of 1658 m(2)/g and a high N content of 16.07 wt%. Benefiting from the unique physical and textural features, the optimal sample depicted a CO2 uptake of up to 4.95 and 3.30 mmol/g at 0 and 25 degrees C under 1 bar of pressure. More importantly, as-prepared adsorbents show great CO2 selectivity over N-2 and outstanding recyclability, which was prominently important for CO2 capture from the flue gases in practical application. An in-depth analysis illustrated that the synergetic effect of textural properties and surface nitrogen decoration mainly determined the CO2 capture performance. However, the textural properties of carbons play a more important role than surface functionalities in deciding CO2 uptake. In view of cost-effective synthesis, outstanding textural activity, and the high adsorption capacity together with good selectivity, this advanced approach becomes valid and convenient in fabricating a unique highly efficient N-rich carbon adsorbent for CO2 uptake and separation from flue gases.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Nitrogen-Doped Porous Carbon Materials Derived from Graphene Oxide/Melamine Resin Composites for CO2 Adsorption
    Ouyang, Like
    Xiao, Jianfei
    Jiang, Housheng
    Yuan, Shaojun
    MOLECULES, 2021, 26 (17):
  • [32] Facile preparation of N-doped porous carbon from chitosan and NaNH2 for CO2 adsorption and conversion
    Yang, Chunliang
    Zhao, Tianxiang
    Pan, Hongyan
    Liu, Fei
    Cao, Jianxin
    Lin, Qian
    CHEMICAL ENGINEERING JOURNAL, 2022, 432
  • [33] Poplar catkin-derived self-templated synthesis of N-doped hierarchical porous carbon microtubes for effective CO2 capture
    Chang, Binbin
    Shi, Weiwei
    Yin, Hang
    Zhang, Shouren
    Yang, Baocheng
    CHEMICAL ENGINEERING JOURNAL, 2019, 358 : 1507 - 1518
  • [34] Ultra-high selective capture of CO2 on one-sided N-doped carbon nanoscrolls
    Li, Xiaofang
    Jin, Yakang
    Xue, Qingzhong
    Zhu, Lei
    Xing, Wei
    Zheng, Haixia
    Liu, Zilong
    JOURNAL OF CO2 UTILIZATION, 2017, 18 : 275 - 282
  • [35] Synthesis of S, N co-doped porous carbons from polybenzoxazine for CO2 capture
    Jin Zu-er
    Wang Jian-long
    Zhao Ri-jie
    Guan Tao-tao
    Zhang Dong-dong
    Li Kai-xi
    NEW CARBON MATERIALS, 2018, 33 (05) : 392 - 401
  • [36] N-doped porous carbon derived from polypyrrole for CO2 capture from humid flue gases
    Wang, Zhe
    Goyal, Nitin
    Liu, Liying
    Tsang, Daniel C. W.
    Shang, Jin
    Liu, Weijie
    Li, Gang
    CHEMICAL ENGINEERING JOURNAL, 2020, 396
  • [37] Sulfur-Doped porous carbon Adsorbent: A promising solution for effective and selective CO2 capture
    Bai, Jiali
    Shao, Jiawei
    Yu, Qiyun
    Demir, Muslum
    Altay, Bilge Nazli
    Ali, Turgunov Muhammad
    Jiang, Yongfu
    Wang, Linlin
    Hu, Xin
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [38] Promising Porous Carbon Derived from Celtuce Leaves with Outstanding Supercapacitance and CO2 Capture Performance
    Wang, Rutao
    Wang, Peiyu
    Yan, Xingbin
    Lang, Junwei
    Peng, Chao
    Xue, Qunji
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (11) : 5800 - 5806
  • [39] Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture
    He, Song
    Chen, Guanyu
    Xiao, Huan
    Shi, Guibin
    Ruan, Chichi
    Ma, Yuansheng
    Dai, Huaming
    Yuan, Bihe
    Chen, Xianfeng
    Yang, Xiaobing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 582 : 90 - 101
  • [40] Synthesis of highly porous N-doped hollow carbon nanospheres with a combined soft template-chemical activation method for CO2 capture
    Shi, Jinsong
    Xu, Jianguo
    Cui, Hongmin
    Yan, Nanfu
    Zou, Jiyong
    Liu, Yuewei
    You, Shengyong
    ENERGY, 2023, 280