LOCAL BEHAVIOR, RADIAL SYMMETRY AND CLASSIFICATION OF SOLUTIONS TO WEIGHTED ELLIPTIC EQUATIONS

被引:0
作者
LI, Kui [1 ]
Zhang, Zhitao [2 ,3 ,4 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2024年 / 17卷 / 02期
基金
国家重点研发计划;
关键词
Nonlinear elliptic equations; isolated singularity; asymptotic behavior; radial symmetry; classification; ASYMPTOTICS;
D O I
10.3934/dcdss.2023007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study positive solutions with an isolated singularity to a class of weighted elliptic equations in B1\{0} and in RN\{0}. First, in B1\{0} we present new results on the asymptotic behavior at the singular point for positive solutions. Then in RN\{0}, we prove radially symmetric properties for positive singular solutions, and give a complete classification for these solutions.
引用
收藏
页码:512 / 529
页数:18
相关论文
共 20 条
  • [1] Aviles P., On isolated singularities in some nonlinear partial differential equations, Indiana Univ. Math. J, 32, pp. 773-791, (1983)
  • [2] Bidaut-Veron M.-F., Veron L., Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math, 106, pp. 489-539, (1991)
  • [3] Caffarelli L. A., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math, 42, pp. 271-297, (1989)
  • [4] Caffarelli L., Kohn R., Nirenberg L., First order interpolation inequalities with weights, Compositio Math, 53, pp. 259-275, (1984)
  • [5] Catrina F., Wang Z.-Q., On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math, 54, pp. 229-258, (2001)
  • [6] Chen C., Lin C., Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J, 78, pp. 315-334, (1995)
  • [7] Chen H., Felmer P., Yang J., Weak solutions of semilinear elliptic equation involving Dirac mass, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 35, pp. 729-750, (2018)
  • [8] Chen H., Peng R., Zhou F., Nonexistence of positive supersolutions to a class of semilinear elliptic equations and systems in an exterior domain, Sci. China Math, 63, pp. 1307-1322, (2020)
  • [9] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J, 63, pp. 615-622, (1991)
  • [10] Du Y., Guo Z., Finite Morse index solutions and asymptotics of weighted nonlinear elliptic equations, Adv. Differ. Equations, 18, pp. 737-768, (2013)