Automatic Modeling of High-Temperature Superconducting Cable Using Reinforcement Learning

被引:0
作者
Bang, Su Sik [1 ]
Kwon, Gu-Young [2 ]
机构
[1] Tech Univ Korea, Dept Elect Engn, Shihung, South Korea
[2] Dongguk Univ, Dept Smart Safety Engn, Gyeongju, South Korea
基金
新加坡国家研究基金会;
关键词
Superconducting cables; High-temperature superconductors; Power cables; Training; Temperature measurement; Data models; Communication cables; Automation; frequency characteristic; high temperature superconducting (HTS) cable; modeling; reflectometry; reinforcement learning; HTS; SYSTEMS;
D O I
10.1109/TASC.2023.3240379
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a technique of automatic modeling for high-temperature superconducting (HTS) cables. Reinforcement learning (RL), which is a representative methodology for automation and intelligence, is applied for the automation of the proposed modeling. To reflect the high-frequency characteristics of the HTS cables in the proposed modeling, reflectometry-based cable modeling is used. In addition, for agent training, an environment that combines simulation and experiment results is proposed, and detailed techniques for the process of the proposed RL model are introduced. The proposed technique is demonstrated by experiment using an actual HTS cable under 77 K and 300 K conditions. It is expected that the proposed technique will allow anyone without the related knowledge to perform the modeling of the HTS cables.
引用
收藏
页数:5
相关论文
共 23 条
[1]   Modeling and simulation of HTS cables for scattering parameter analysis [J].
Bang, Su Sik ;
Lee, Geon Seok ;
Kwon, Gu-Young ;
Lee, Yeong Ho ;
Chang, Seung Jin ;
Lee, Chun-Kwon ;
Sohn, Songho ;
Park, Kijun ;
Shin, Yong-June .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2016, 530 :142-146
[2]   A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks [J].
Chen, Xiaoyuan ;
Jiang, Shan ;
Chen, Yu ;
Lei, Yi ;
Zhang, Donghui ;
Zhang, Mingshun ;
Gou, Huayu ;
Shen, Boyang .
ENERGY, 2022, 250
[3]   Energy-saving superconducting power delivery from renewable energy source to a 100-MW-class data center [J].
Chen, Xiaoyuan ;
Jiang, Shan ;
Chen, Yu ;
Zou, Zhice ;
Shen, Boyang ;
Lei, Yi ;
Zhang, Donghui ;
Zhang, Mingshun ;
Gou, Huayu .
APPLIED ENERGY, 2022, 310
[4]   Upgrade and Commissioning of the SULTAN Facility to Host Quench Experiments on HTS High Current Conductors [J].
Dicuonzo, Ortensia ;
Kang, Rui ;
Sedlak, Kamil ;
Stepanov, Boris ;
Uglietti, Davide ;
Wesche, Rainer ;
Bruzzone, Pierluigi .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2021, 31 (05)
[5]   The Feasibility Design Study and Cold Test of the First Model of HTS Cable With the Longitudinal Magnetic Field Effect [J].
Fetisov, S. S. ;
Zubko, V. V. ;
Zanegin, S. Yu ;
Vysotsky, V. S. ;
Nosov, A. A. ;
Otabe, E. S. ;
Kinoshita, Y. ;
Akasaka, T. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2022, 32 (04)
[6]   Numerical Simulation and Cold Test of a Compact 2G HTS Power Cable [J].
Fetisov, Sergey S. ;
Zubko, Vasily V. ;
Zanegin, Sergey Yu ;
Nosov, Alexander A. ;
Vysotsky, Vitaly S. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2018, 28 (04)
[7]   Numerical Study on AC Loss Properties of HTS Cable Consisting of YBCO Coated Conductor for HTS Power Devices [J].
Fu, Shanshan ;
Qiu, Ming ;
Zhu, Jiahui ;
Zhang, Huiming ;
Gong, Jun ;
Zhao, Xin ;
Yuan, Weijia ;
Guo, Jianbo .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2018, 28 (04)
[8]   Fault Diagnosis for Electrical Systems and Power Networks: A Review [J].
Furse, Cynthia M. ;
Kafal, Moussa ;
Razzaghi, Reza ;
Shin, Yong-June .
IEEE SENSORS JOURNAL, 2021, 21 (02) :888-906
[9]  
Kingma DP, 2014, ADV NEUR IN, V27
[10]   1D convolutional neural networks and applications: A survey [J].
Kiranyaz, Serkan ;
Avci, Onur ;
Abdeljaber, Osama ;
Ince, Turker ;
Gabbouj, Moncef ;
Inman, Daniel J. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 151