Error Estimates of EDG-HDG Methods for the Stokes Equations with Dirac Measures

被引:0
作者
Leng, Haitao [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510000, Guangdong, Peoples R China
关键词
Stokes equation; Dirac measure; Discontinuous Galerkin method; Divergence-free; H(div)-conforming; A priori error estimate; A posteriori error estimate; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT-METHOD; ELLIPTIC PROBLEMS; A-PRIORI; DIFFUSION; APPROXIMATION;
D O I
10.1007/s10915-023-02116-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the hybridized, embedded-hybridized and embedded discontinuous Galerkin methods for the Stokes equations with Dirac measures. The velocity, the velocity traces and the pressure traces are approximated by polynomials of degree k >= 1, and the pressure is discretized by polynomials of degree k - 1. An attractive property, named divergence-free, is satisfied by the discrete velocity field. Moreover, the discrete velocity fields derived by hybridized and embedded-hybridized discontinuous Galerkin methods are H(div)-conforming. Using duality argument and Oswald interpolation, a priori and a posteriori error estimates are obtained for the velocity in L-2-norm. In addition, a posteriori error estimates for the velocity in W-1,W-q-seminorm and the pressure in L-q-norm are also derived. Finally, numerical examples are provided to validate the theoretical analysis and show the performance of the obtained a posteriori error estimators.
引用
收藏
页数:31
相关论文
共 44 条
[1]  
Adams R.A., 1975, Sobolev Spaces
[2]   AN ADAPTIVE FEM FOR THE POINTWISE TRACKING OPTIMAL CONTROL PROBLEM OF THE STOKES EQUATIONS [J].
Allendes, Alejandro ;
Fuica, Francisco ;
Otarola, Enrique ;
Quero, Daniel .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05) :A2967-A2998
[3]   A posteriori error estimates for the Stokes problem with singular sources [J].
Allendes, Alejandro ;
Otarola, Enrique ;
Salgado, Abner J. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 345 :1007-1032
[4]   Adaptive finite element methods for an optimal control problem involving Dirac measures [J].
Allendes, Alejandro ;
Otarola, Enrique ;
Rankin, Richard ;
Salgado, Abner J. .
NUMERISCHE MATHEMATIK, 2017, 137 (01) :159-197
[5]  
[Anonymous], 1996, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques
[6]  
[Anonymous], 2008, MATH THEORY FINITE E, DOI [10.1007/978-0-387-75934-0, DOI 10.1007/978-0-387-75934-0]
[7]   A PRIORI MESH GRADING FOR AN ELLIPTIC PROBLEM WITH DIRAC RIGHT-HAND SIDE [J].
Apel, Thomas ;
Benedix, Olaf ;
Sirch, Dieter ;
Vexler, Boris .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (03) :992-1005
[8]   A posteriori error estimates for elliptic problems with Dirac delta source terms [J].
Araya, Rodolfo ;
Behrens, Edwin ;
Rodriguez, Rodolfo .
NUMERISCHE MATHEMATIK, 2006, 105 (02) :193-216
[9]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[10]   GENERALIZED INF-SUP CONDITIONS FOR TSCHEBYSCHEFF SPECTRAL APPROXIMATION OF THE STOKES PROBLEM [J].
BERNARDI, C ;
CANUTO, C ;
MADAY, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (06) :1237-1271