Methanol upgrading coupled with hydrogen product at large current density promoted by strong interfacial interactions

被引:162
作者
Hao, Yixin [1 ]
Yu, Deshuang [1 ]
Zhu, Shangqian [2 ]
Kuo, Chun-Han [3 ]
Chang, Yu-Ming [3 ]
Wang, Luqi [1 ]
Chen, Han-Yi [3 ]
Shao, Minhua [2 ,4 ]
Peng, Shengjie [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Jiangsu Key Lab Electrochem Energy Storage Technol, Nanjing 210016, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Kowloon, Hong Kong, Peoples R China
[3] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
[4] Hong Kong Univ Sci & Technol, Energy Inst, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
OXIDATION; ELECTROCATALYSTS;
D O I
10.1039/d2ee03936b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Anodic organic upgrading offers a promising strategy to produce value-added chemicals and to facilitate coupled hydrogen production but it is still challenging in terms of long-term stability and high activity of the electrocatalysts at large current densities. Herein, highly dispersed FeNi oxide heterojunctions anchored on nickel foam (Fe2O3/NiO) as efficient catalysts are synthesized via an ultrafast solution combustion strategy. In methanol electrooxidation, a large absolute current density (500 mA cm(-2) at 1.654 V vs. RHE) with a high faradaic efficiency (>98%) is achieved. In situ infrared spectroscopy and theoretical calculations indicate that the heterostructure modulates the electronic state of NiO through strong electronic interactions, providing unique collaborative active sites for the favorable dynamic conversion of methanol to formate and inhibiting further oxidation. Furthermore, the interface confinement effect also stabilizes the metastable nickel active site, which ensures the stability of the catalyst structure during the reversible redox cycling, resulting in a steady and dynamically-enhanced catalytic process.
引用
收藏
页码:1100 / 1110
页数:11
相关论文
共 50 条
[1]   Ultrasonically Surface-Activated Nickel Foam as a Highly Efficient Monolith Electrode for the Catalytic Oxidation of Methanol to Formate [J].
Abdullah, Muhammad Imran ;
Hameed, Asima ;
Zhang, Ning ;
Islam, Md Hujjatul ;
Ma, Mingming ;
Pollet, Bruno G. .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (26) :30603-30613
[2]   Self-supported ultra-active NiO-based electrocatalysts for the oxygen evolution reaction by solution combustion [J].
Bucci, Alberto ;
Garcia-Tecedor, Miguel ;
Corby, Sacha ;
Rao, Reshma R. ;
Martin-Diaconescu, Vlad ;
Oropeza, Freddy E. ;
de la Pena O'Shea, Victor A. ;
Durrant, James R. ;
Gimenez, Sixto ;
Lloret-Fillol, Julio .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (21) :12700-12710
[3]   Divergent Paths, Same Goal: A Pair-Electrosynthesis Tactic for Cost-Efficient and Exclusive Formate Production by Metal-Organic-Framework-Derived 2D Electrocatalysts [J].
Cao, Changsheng ;
Ma, Dong-Dong ;
Jia, Jingchun ;
Xu, Qiang ;
Wu, Xin-Tao ;
Zhu, Qi-Long .
ADVANCED MATERIALS, 2021, 33 (25)
[4]   Formate, an active intermediate for direct oxidation of methanol on Pt electrode [J].
Chen, YX ;
Miki, A ;
Ye, S ;
Sakai, H ;
Osawa, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (13) :3680-3681
[5]   Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of α-Nitrotoluenes to E-Nitroethenes [J].
Chong, Xiaodan ;
Liu, Cuibo ;
Wang, Changhong ;
Yang, Rong ;
Zhang, Bin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (40) :22010-22016
[6]   Highly Branched Metal Alloy Networks with Superior Activities for the Methanol Oxidation Reaction [J].
Cui, Xun ;
Xiao, Peng ;
Wang, Jing ;
Zhou, Ming ;
Guo, Wenlong ;
Yang, Yang ;
He, Yanjie ;
Wang, Zewei ;
Yang, Yingkui ;
Zhang, Yunhuai ;
Lin, Zhiqun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (16) :4488-4493
[7]   Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol [J].
Dong, Bing ;
Li, Wei ;
Huang, Xiaoxiao ;
Ali, Zeeshan ;
Zhang, Teng ;
Yang, Ziyu ;
Hou, Yanglong .
NANO ENERGY, 2019, 55 :37-41
[8]   High Entropy Alloy Electrocatalytic Electrode toward Alkaline Glycerol Valorization Coupling with Acidic Hydrogen Production [J].
Fan, Linfeng ;
Ji, Yaxin ;
Wang, Genxiang ;
Chen, Junxiang ;
Chen, Kai ;
Liu, Xi ;
Wen, Zhenhai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (16) :7224-7235
[9]   Ultrathinning Nickel Sulfide with Modulated Electron Density for Efficient Water Splitting [J].
Fei, Ben ;
Chen, Ziliang ;
Liu, Jiexian ;
Xu, Hongbin ;
Yan, Xiaoxiao ;
Qing, Huilin ;
Chen, Mao ;
Wu, Renbing .
ADVANCED ENERGY MATERIALS, 2020, 10 (41)
[10]   Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst [J].
Geng, Shi-Kui ;
Zheng, Yao ;
Li, Shan-Qing ;
Su, Hui ;
Zhao, Xu ;
Hu, Jun ;
Shu, Hai-Bo ;
Jaroniec, Mietek ;
Chen, Ping ;
Liu, Qing-Hua ;
Qiao, Shi-Zhang .
NATURE ENERGY, 2021, 6 (09) :904-912