Thermal Transport in 2D Materials

被引:19
作者
Kalantari, Mohammad Hassan [1 ]
Zhang, Xian [1 ]
机构
[1] Stevens Inst Technol, Sch Engn & Sci, Dept Mech Engn, Hoboken, NJ 07030 USA
基金
美国国家科学基金会;
关键词
2D materials; thermal conductivity; simulations; experimental measurements; TEMPERATURE-DEPENDENT RAMAN; STATE-RESOLVED RAMAN; PHONON TRANSPORT; 2-DIMENSIONAL MATERIALS; SUSPENDED GRAPHENE; ENERGY-TRANSPORT; MONTE-CARLO; CONDUCTIVITY; MOS2; RESISTANCE;
D O I
10.3390/nano13010117
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent decades, two-dimensional materials (2D) such as graphene, black and blue phosphorenes, transition metal dichalcogenides (e.g., WS2 and MoS2), and h-BN have received illustrious consideration due to their promising properties. Increasingly, nanomaterial thermal properties have become a topic of research. Since nanodevices have to constantly be further miniaturized, thermal dissipation at the nanoscale has become one of the key issues in the nanotechnology field. Different techniques have been developed to measure the thermal conductivity of nanomaterials. A brief review of 2D material developments, thermal conductivity concepts, simulation methods, and recent research in heat conduction measurements is presented. Finally, recent research progress is summarized in this article.
引用
收藏
页数:32
相关论文
共 192 条
[1]   Measuring the thermal conductivity and interfacial thermal resistance of suspended MoS2 using electron beam self-heating technique [J].
Aiyiti, Adili ;
Bai, Xue ;
Wu, Jing ;
Xu, Xiangfan ;
Li, Baowen .
SCIENCE BULLETIN, 2018, 63 (07) :452-458
[2]   Thermal conductivity of suspended few-layer MoS2 [J].
Aiyiti, Adili ;
Hu, Shiqian ;
Wang, Chengru ;
Xi, Qing ;
Cheng, Zhaofang ;
Xia, Minggang ;
Ma, Yanling ;
Wu, Jianbo ;
Guo, Jie ;
Wang, Qilang ;
Zhou, Jun ;
Chen, Jie ;
Xu, Xiangfan ;
Li, Baowen .
NANOSCALE, 2018, 10 (06) :2727-2734
[3]   Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes [J].
Aksamija, Z. ;
Knezevic, I. .
PHYSICAL REVIEW B, 2010, 82 (04)
[4]   Microfabricated suspended island platform for the measurement of in-plane thermal conductivity of thin films and nanostructured materials with consideration of contact resistance [J].
Alaie, Seyedhamidreza ;
Goettler, Drew F. ;
Abbas, Khawar ;
Su, Mehmet F. ;
Reinke, Charles M. ;
El-Kady, Ihab ;
Leseman, Zayd C. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (10)
[5]   Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films [J].
Alam, M. T. ;
Bresnehan, M. S. ;
Robinson, J. A. ;
Haque, M. A. .
APPLIED PHYSICS LETTERS, 2014, 104 (01)
[6]   Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy [J].
Alem, Nasim ;
Erni, Rolf ;
Kisielowski, Christian ;
Rossell, Marta D. ;
Gannett, Will ;
Zettl, A. .
PHYSICAL REVIEW B, 2009, 80 (15)
[7]   Thickness-dependent in-plane thermal conductivity of suspended MoS2 grown by chemical vapor deposition [J].
Bae, Jung Jun ;
Jeong, Hye Yun ;
Han, Gang Hee ;
Kim, Jaesu ;
Kim, Hyun ;
Kim, Min Su ;
Moon, Byoung Hee ;
Lim, Seong Chu ;
Lee, Young Hee .
NANOSCALE, 2017, 9 (07) :2541-2547
[8]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[9]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[10]  
Bergman T.L., 2011, FUNDAMENTALS HEAT MA, V7th, DOI DOI 10.1109/TKDE.2004.30