A novel hybrid deep learning model for aspect based sentiment analysis

被引:10
作者
Kuppusamy, Mouthami [1 ]
Selvaraj, Anandamurugan [2 ]
机构
[1] KPR Inst Engn & Technol, Dept Comp Sci & Engn, Coimbatore, India
[2] Kongu Engn Coll, Dept Informat Technol, Erode, India
关键词
aspect extraction; bi-directional long short-term memory; convolutional neural network; sentiment analysis; CNN-BILSTM MODEL; CLASSIFICATION; NETWORKS; ENSEMBLE; REVIEWS; SYSTEM;
D O I
10.1002/cpe.7538
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The usage of social media, forums, and e-commerce websites have been widely increased. Feedback from customers has a big impact on the final product. A service provider, merchant, or manufacturer need all the information, even if it is just a comment or a review about a service or a product. So, it is vital to look at input from users, and therefore sentiment analysis has received a lot of interest. Sentiment analysis is a method for identifying and analyzing text in order to determine the features, qualities, and viewpoints of particular user. Extracting user aspects is the main part of this process, and it is used to group the user aspects. In recent years, convolutional neural network (CNN) models have gained popularity in natural language processing. Thus, this research proposes a novel hybrid CNN model by concatenating the bidirectional long short-term memory and CNN models to process the data sequentially by learning their high-level features. The concatenated method minimizes the loss of critical information. Benchmark product reviews and hotel review datasets are employed in the experiments, and accuracies of 93.6% for the product review dataset and 92.7% for the hotel review dataset are achieved by the proposed hybrid model when compared to state-of-the-art techniques.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Advancing aspect-based sentiment analysis with a novel architecture combining deep learning models CNN and bi-RNN with the machine learning model SVM
    Hammi, Sarsabene
    Hammami, Souha Mezghani
    Belguith, Lamia Hadrich
    SOCIAL NETWORK ANALYSIS AND MINING, 2023, 13 (01)
  • [42] A critical empirical evaluation of deep learning models for solving aspect based sentiment analysis
    P. R. Joe Dhanith
    K. S. Sakunthala Prabha
    Artificial Intelligence Review, 2023, 56 : 13127 - 13186
  • [43] DNet: A lightweight and efficient model for aspect based sentiment analysis
    Ren, Feiyang
    Feng, Liangming
    Xiao, Ding
    Cai, Ming
    Cheng, Sheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 151 (151)
  • [44] A Hybrid Deep Implicit Neural Model for Sentiment Analysis via Transfer Learning
    Jahanbin, Kia
    Chahooki, Mohammad Ali Zare
    IEEE ACCESS, 2024, 12 : 131468 - 131486
  • [45] RoBERTa-GRU: A Hybrid Deep Learning Model for Enhanced Sentiment Analysis
    Tan, Kian Long
    Lee, Chin Poo
    Lim, Kian Ming
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [46] Social Network Sentiment Analysis Using Hybrid Deep Learning Models
    Merayo, Noemi
    Vegas, Jesus
    Llamas, Cesar
    Fernandez, Patricia
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [47] A Transfer Learning based Approach for Aspect Based Sentiment Analysis
    Fang, Xing
    Tao, Jie
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2019, : 478 - 483
  • [48] Deep learning-based hybrid sentiment analysis with feature selection using optimization algorithm
    D. Anand Joseph Daniel
    M. Janaki Meena
    Multimedia Tools and Applications, 2023, 82 : 43273 - 43296
  • [49] A comprehensive survey on aspect-based sentiment analysis
    Yadav, Kaustubh
    Kumar, Neeraj
    Maddikunta, Praveen Kumar Reddy
    Gadekallu, Thippa Reddy
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2021, 12 (04) : 279 - 290
  • [50] Aspect-Based Sentiment Analysis for Service Industry
    Maroof, Afsheen
    Wasi, Shaukat
    Jami, Syed Imran
    Siddiqui, Muhammad Shoaib
    IEEE ACCESS, 2024, 12 : 109702 - 109713