The aim of this paper is to define a pair of symplectic Dirac operators (D+, D-) in an algebraic setting motivated by the analogy with the algebraic orthogonal Dirac operators in representation theory. We work in the settings of DOUBLE-STRUCK CAPITAL Z/2-graded quadratic Lie algebras 𝔤� = 𝔨� + 𝔭� and of graded affine Hecke algebras ℍ. In these contexts, we show analogues of the Parthasarathy's formula for [D+, D-] and certain generalisations of the Casimir inequality.
机构:
Aix Marseille Univ, CNRS, Ctr Theoret Phys, UMR 7332, F-13288 Marseille, France
Univ Toulon & Var, CNRS, UMR 7332, F-83957 La Garde, FranceAix Marseille Univ, CNRS, Ctr Theoret Phys, UMR 7332, F-13288 Marseille, France
Ogievetsky, Oleg V.
D'Andecy, Loic Poulain
论文数: 0引用数: 0
h-index: 0
机构:
Versailles St Quentin Univ, CNRS UMR 8100, LMV, Math Lab Versailles, F-78035 Versailles, FranceAix Marseille Univ, CNRS, Ctr Theoret Phys, UMR 7332, F-13288 Marseille, France