SYMPLECTIC DIRAC OPERATORS FOR LIE ALGEBRAS AND GRADED HECKE ALGEBRAS

被引:0
|
作者
Ciubotaru, D. [1 ]
De Martino, M. [1 ]
Meyer, P. [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
REPRESENTATIONS;
D O I
10.1007/s00031-022-09762-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to define a pair of symplectic Dirac operators (D+, D-) in an algebraic setting motivated by the analogy with the algebraic orthogonal Dirac operators in representation theory. We work in the settings of DOUBLE-STRUCK CAPITAL Z/2-graded quadratic Lie algebras 𝔤� = 𝔨� + 𝔭� and of graded affine Hecke algebras ℍ. In these contexts, we show analogues of the Parthasarathy's formula for [D+, D-] and certain generalisations of the Casimir inequality.
引用
收藏
页码:1447 / 1475
页数:29
相关论文
共 50 条
  • [31] Levi decomposable algebras in the classical Lie algebras
    Douglas, Andrew
    Repka, Joe
    JOURNAL OF ALGEBRA, 2015, 428 : 292 - 314
  • [32] Symplectic Double Extensions for Restricted Quasi-Frobenius Lie (Super)Algebras
    Bouarroudj, Sofiane
    Ehret, Quentin
    Maeda, Yoshiaki
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [33] On the Decomposition of Hecke Polynomials over Parabolic Hecke Algebras
    Heyer, Claudius
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (03): : 941 - 997
  • [34] Z/m-GRADED LIE ALGEBRAS AND PERVERSE SHEAVES, IV
    Lusztig, George
    Yun, Zhiwei
    REPRESENTATION THEORY, 2020, 24 : 360 - 396
  • [35] GENERALIZED SPRINGER CORRESPONDENCE FOR Z/m-GRADED LIE ALGEBRAS
    Liu, Wille
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (05): : 1449 - 1515
  • [36] FREE PROBABILITY ON C*-ALGEBRAS INDUCED BY HECKE ALGEBRAS OVER PRIMES
    Cho, Ilwoo
    Jorgense, Palle
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (08): : 2221 - 2252
  • [37] Endomorphism algebras and Hecke algebras for reductive p-adic groups
    Solleveld, Maarten
    JOURNAL OF ALGEBRA, 2022, 606 : 371 - 470
  • [38] Quasiclassical Lie algebras
    Baranov, AA
    Zalesskii, AE
    JOURNAL OF ALGEBRA, 2001, 243 (01) : 264 - 293
  • [39] Idempotents of Hecke algebras of type A.
    Aiston, AK
    Morton, HR
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1998, 7 (04) : 463 - 487
  • [40] Characters of Iwahori-Hecke algebras
    Zhao, Deke
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 229 (01) : 67 - 83