The dual tree of a fold map germ from R3 to R4

被引:1
|
作者
Moya-Perez, J. A. [1 ]
Nuno-Ballesteros, J. J. [1 ,2 ]
机构
[1] Univ Valencia, Dept Matemat, Campus Burjassot, Burjassot 46100, Spain
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Dual tree; topological classification; double point curve; TOPOLOGICAL INVARIANTS; ORIENTED; 3-MANIFOLDS; CLASSIFICATION; SURFACES;
D O I
10.1017/prm.2022.27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f : (R-3,0) -> (R-4,0) be an analytic map germ with isolated instability. Its link is a stable map which is obtained by taking the intersection of the image of f with a small enough sphere S-epsilon(3) centred at the origin in R-4. If f is of fold type, we define a tree, that we call dual tree, that contains all the topological information of the link and we prove that in this case it is a complete topological invariant. As an application we give a procedure to obtain normal forms for any topological class of fold type.
引用
收藏
页码:958 / 977
页数:20
相关论文
共 50 条
  • [31] COMPACT COMPLETE MINIMAL IMMERSIONS IN R3
    Alarcon, Antonio
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (08) : 4063 - 4076
  • [32] CLOSED HYPERSURFACES OF LOW ENTROPY IN R4 ARE ISOTOPICALLY TRIVIAL
    Bernstein, Jacob
    Wang, L. U.
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (07) : 1531 - 1558
  • [33] TRAM SLATING SOLITONS FOR THE ME IN CURVATURE FLOW IN R4
    Lee, Hojoo
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (03) : 491 - 499
  • [34] Gauss maps on canal hypersurfaces of generic curves in R4
    Nabarro, A. C.
    Romero Fuster, M. C.
    Zanardo, M. C.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 79
  • [35] The spectral data for Hamiltonian stationary Lagrangian tori in R4
    McIntosh, Ian
    Romon, Pascal
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (02) : 125 - 146
  • [36] Non-Kahler complex structures on R4, II
    Di Scala, Antonio J.
    Kasuya, Naohiko
    Zuddas, Daniele
    JOURNAL OF SYMPLECTIC GEOMETRY, 2018, 16 (03) : 631 - 644
  • [37] Self-similar solutions to the MCF in R3
    Leandro, Benedito
    Novais, Rafael
    dos Reis, Hiuri
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2023, 87
  • [38] Scherk saddle towers of genus two in R3
    da Silva, M. F.
    Ramos Batista, V.
    GEOMETRIAE DEDICATA, 2010, 149 (01) : 59 - 71
  • [39] Interactive Visualization for Singular Fibers of Functions f : R3 → R2
    Sakurai, Daisuke
    Saeki, Osamu
    Carr, Hamish
    Wu, Hsiang-Yun
    Yamamoto, Takahiro
    Duke, David
    Takahashi, Shigeo
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) : 945 - 954
  • [40] Surfaces of prescribed linear Weingarten curvature in R3
    Bueno, Antonio
    Ortiz, Irene
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (04) : 1347 - 1370