ON Z4Z4[u3]-ADDITIVE CONSTACYCLIC CODES

被引:2
作者
Prakash, Om [1 ]
Yadav, Shikha [1 ]
Islam, Habibul [1 ]
Sole, Patrick [2 ]
机构
[1] Indian Inst Technol Patna, Dept Math, Patna 801106, Bihar, India
[2] Aix Marseille Univ, Cent Marseille, CNRS, I2M, Marseille, France
关键词
Additive code; cyclic code; constacyclic code; Gray map; ADDITIVE CYCLIC CODES;
D O I
10.3934/amc.2022017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let Z(4) be the ring of integers modulo 4. This paper studies mixed alphabets Z(4)Z(4)[u(3)]-additive cyclic and lambda-constacyclic codes for units lambda = 1 + 2u(2), 3 + 2u(2). First, we obtain the generator polynomials and minimal generating set of additive cyclic codes. Then we extend our study to determine the structure of additive constacyclic codes. Further, we define some Gray maps and obtain Z(4)-images of such codes. Finally, we present numerical examples that include six new and two best-known quaternary linear codes.
引用
收藏
页码:246 / 261
页数:16
相关论文
共 50 条
[41]   On a Class of (δ plus αu2)-Constacyclic Codes over Fq[u] =/⟨u4⟩ [J].
Cao, Yuan ;
Cao, Yonglin ;
Gao, Jian .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (07) :1438-1445
[42]   Self-dual codes over Z(4) [J].
Bandi, Rama Krishna ;
Bhaintwal, Maheshanand .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (02)
[43]   A study on structure of codes over Z4 [J].
Karthick, G. .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (03) :567-578
[44]   Negacyclic and cyclic codes over Z4 [J].
Wolfmann, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) :2527-2532
[45]   Distance colorings of hypercubes from Z2Z4-linear codes [J].
Matthews, Gretchen L. .
DISCRETE APPLIED MATHEMATICS, 2017, 217 :356-361
[46]   The structure of Z(2)Z(2)s-additive cyclic codes [J].
Aydogdu, Ismail ;
Abualrub, Taher .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (04)
[47]   Construction of quantum codes from λ-constacyclic codes over the ring Fp[u,v]/⟨v3-v,u3-u,uv-vu⟩ [J].
Gowdhaman, Karthick ;
Mohan, Cruz ;
Chinnapillai, Durairajan ;
Gao, Jian .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 65 (1-2) :611-622
[48]   Z4Z4Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_{4}{\mathbb {Z}}_{4}{\mathbb {Z}}_{4}$$\end{document}-additive cyclic codes are asymptotically good [J].
Hai Q. Dinh ;
Bhanu Pratap Yadav ;
Sachin Pathak ;
Abhyendra Prasad ;
Ashish Kumar Upadhyay ;
Woraphon Yamaka .
Applicable Algebra in Engineering, Communication and Computing, 2024, 35 (4) :485-505
[49]   A class of constacyclic codes over Z4[u]/⟨uk⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{4}[u]/\langle u^{k}\rangle $$\end{document} [J].
Habibul Islam ;
Tushar Bag ;
Om Prakash .
Journal of Applied Mathematics and Computing, 2019, 60 :237-251
[50]   A class of skew constacyclic codes over ℤ4 [J].
El Hamdaoui, Mohammadi ;
Ou-Azzou, Hassan ;
Boua, Abdelkarim .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2025,