Artificial Intelligence for Drug Discovery: AreWe There Yet?

被引:56
作者
Hasselgren, Catrin [1 ]
Oprea, Tudor I. [2 ,3 ]
机构
[1] Genentech Inc, Safety Assessment, San Francisco, CA USA
[2] Expert Syst Inc, San Diego, CA 92130 USA
[3] Univ New Mexico, Hlth Sci Ctr, Dept Internal Med, Albuquerque, NM 87131 USA
基金
美国国家卫生研究院;
关键词
autoencoders; deep learning; explainable AI; generative chemistry; knowledge graphs; machine learning; multiproperty optimization; small-molecule drug discovery; target identification; KNOWLEDGE GRAPH; PREDICTION; TARGET; QSAR; VALIDATION; DESIGN; IDENTIFICATION; DATABASE; RELEVANT; ACCURATE;
D O I
10.1146/annurev-pharmtox-040323-040828
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Drug discovery is adapting to novel technologies such as data science, informatics, and artificial intelligence (AI) to accelerate effective treatment development while reducing costs and animal experiments. AI is transforming drug discovery, as indicated by increasing interest from investors, industrial and academic scientists, and legislators. Successful drug discovery requires optimizing properties related to pharmacodynamics, pharmacokinetics, and clinical outcomes. This review discusses the use of AI in the three pillars of drug discovery: diseases, targets, and therapeutic modalities, with a focus on small-molecule drugs. AI technologies, such as generative chemistry, machine learning, and multiproperty optimization, have enabled several compounds to enter clinical trials. The scientific community must carefully vet known information to address the reproducibility crisis. The full potential of AI in drug discovery can only be realized with sufficient ground truth and appropriate human intervention at later pipeline stages.
引用
收藏
页码:527 / 550
页数:24
相关论文
共 196 条
[61]  
Green DVS., 2019, ACS Symposium Series, P81, DOI [10.1021/bk-2019-1326.ch005, DOI 10.1021/BK-2019-1326.CH005]
[62]   DISEASES 2.0: a weekly updated database of disease-gene associations from text mining and data integration [J].
Grissa, Dhouha ;
Junge, Alexander ;
Oprea, Tudor, I ;
Jensen, Lars Juhl .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2022, 2022
[63]   The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease [J].
Groza, Tudor ;
Gomez, Federico Lopez ;
Mashhadi, Hamed Haseli ;
Munoz-Fuentes, Violeta ;
Gunes, Osman ;
Wilson, Robert ;
Cacheiro, Pilar ;
Frost, Anthony ;
Keskivali-Bond, Piia ;
Vardal, Bora ;
McCoy, Aaron ;
Cheng, Tsz Kwan ;
Santos, Luis ;
Wells, Sara ;
Smedley, Damian ;
Mallon, Ann-Marie ;
Parkinson, Helen .
NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) :D1038-D1045
[64]   How many rare diseases are there? [J].
Haendel, Melissa ;
Vasilevsky, Nicole ;
Unni, Deepak ;
Bologa, Cristian ;
Harris, Nomi ;
Rehm, Heidi ;
Hamosh, Ada ;
Baynam, Gareth ;
Groza, Tudor ;
McMurry, Julie ;
Dawkins, Hugh ;
Rath, Ana ;
Thaxon, Courtney ;
Bocci, Giovanni ;
Joachimiak, Marcin P. ;
Koehler, Sebastian ;
Robinson, Peter N. ;
Mungall, Chris ;
Oprea, Tudor I. .
NATURE REVIEWS DRUG DISCOVERY, 2020, 19 (02) :77-78
[65]   A Census of Disease Ontologies [J].
Haendel, Melissa A. ;
McMurry, Julie A. ;
Relevo, Rose ;
Mungall, Christopher J. ;
Robinson, Peter N. ;
Chute, Christopher G. .
ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 1, 2018, 1 :305-331
[66]  
Hamosh A, 2005, NUCLEIC ACIDS RES, V33, pD514
[67]   RHO-SIGMA-PI ANALYSIS . METHOD FOR CORRELATION OF BIOLOGICAL ACTIVITY + CHEMICAL STRUCTURE [J].
HANSCH, C ;
FUJITA, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1964, 86 (08) :1616-&
[68]  
HANSH C, 1995, EXPLORING QSAR HYDRO
[69]  
Harris L., 2021, Artificial intelligence: Background, selected issues, and policy considerations
[70]  
Hasselgren C, 2018, METHODS MOL BIOL, V1800, P233, DOI 10.1007/978-1-4939-7899-1_11