Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning

被引:13
作者
Kleiman, Diego E. [1 ]
Nadeem, Hassan [2 ]
Shukla, Diwakar [1 ,2 ,3 ,4 ]
机构
[1] Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
MARKOV STATE MODELS; FORCE-FIELD; PROTEIN STRUCTURES; SIMULATION; MEMBRANE; LIGAND; TIME;
D O I
10.1021/acs.jpcb.3c04843
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics (MD) simulations are fundamental computational tools for the study of proteins and their free energy landscapes. However, sampling protein conformational changes through MD simulations is challenging due to the relatively long time scales of these processes. Many enhanced sampling approaches have emerged to tackle this problem, including biased sampling and path-sampling methods. In this Perspective, we focus on adaptive sampling algorithms. These techniques differ from other approaches because the thermodynamic ensemble is preserved and the sampling is enhanced solely by restarting MD trajectories at particularly chosen seeds rather than introducing biasing forces. We begin our treatment with an overview of theoretically transparent methods, where we discuss principles and guidelines for adaptive sampling. Then, we present a brief summary of select methods that have been applied to realistic systems in the past. Finally, we discuss recent advances in adaptive sampling methodology powered by deep learning techniques, as well as their shortcomings.
引用
收藏
页码:10669 / 10681
页数:13
相关论文
共 90 条
[41]   Highly accurate protein structure prediction with AlphaFold [J].
Jumper, John ;
Evans, Richard ;
Pritzel, Alexander ;
Green, Tim ;
Figurnov, Michael ;
Ronneberger, Olaf ;
Tunyasuvunakool, Kathryn ;
Bates, Russ ;
Zidek, Augustin ;
Potapenko, Anna ;
Bridgland, Alex ;
Meyer, Clemens ;
Kohl, Simon A. A. ;
Ballard, Andrew J. ;
Cowie, Andrew ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Jain, Rishub ;
Adler, Jonas ;
Back, Trevor ;
Petersen, Stig ;
Reiman, David ;
Clancy, Ellen ;
Zielinski, Michal ;
Steinegger, Martin ;
Pacholska, Michalina ;
Berghammer, Tamas ;
Bodenstein, Sebastian ;
Silver, David ;
Vinyals, Oriol ;
Senior, Andrew W. ;
Kavukcuoglu, Koray ;
Kohli, Pushmeet ;
Hassabis, Demis .
NATURE, 2021, 596 (7873) :583-+
[42]  
Kahn H., 1951, National Bureau of Standards applied mathematics series, V12, P27
[43]   Active Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets [J].
Kleiman, Diego E. ;
Shukla, Diwakar .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (14) :4377-4388
[44]   Multiagent Reinforcement Learning-Based Adaptive Sampling for Conformational Dynamics of Proteins [J].
Kleiman, Diego E. ;
Shukla, Diwakar .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (09) :5422-5434
[45]  
Kohlhoff KJ, 2014, NAT CHEM, V6, P15, DOI [10.1038/NCHEM.1821, 10.1038/nchem.1821]
[46]   To milliseconds and beyond: challenges in the simulation of protein folding [J].
Lane, Thomas J. ;
Shukla, Diwakar ;
Beauchamp, Kyle A. ;
Pande, Vijay S. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2013, 23 (01) :58-65
[47]   DeepDriveMD: Deep-Learning Driven Adaptive Molecular Simulations for Protein Folding [J].
Lee, Hyungro ;
Ma, Heng ;
Turilli, Matteo ;
Bhowmik, Debsindhu ;
Jha, Shantenu ;
Ramanathan, Arvind .
PROCEEDINGS OF 2019 IEEE/ACM THIRD WORKSHOP ON DEEP LEARNING ON SUPERCOMPUTERS (DLS), 2019, :12-19
[48]   All-atom empirical potential for molecular modeling and dynamics studies of proteins [J].
MacKerell, AD ;
Bashford, D ;
Bellott, M ;
Dunbrack, RL ;
Evanseck, JD ;
Field, MJ ;
Fischer, S ;
Gao, J ;
Guo, H ;
Ha, S ;
Joseph-McCarthy, D ;
Kuchnir, L ;
Kuczera, K ;
Lau, FTK ;
Mattos, C ;
Michnick, S ;
Ngo, T ;
Nguyen, DT ;
Prodhom, B ;
Reiher, WE ;
Roux, B ;
Schlenkrich, M ;
Smith, JC ;
Stote, R ;
Straub, J ;
Watanabe, M ;
Wiórkiewicz-Kuczera, J ;
Yin, D ;
Karplus, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (18) :3586-3616
[49]   VAMPnets for deep learning of molecular kinetics [J].
Mardt, Andreas ;
Pasquali, Luca ;
Wu, Hao ;
Noe, Frank .
NATURE COMMUNICATIONS, 2018, 9
[50]   lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests [J].
Mariani, Valerio ;
Biasini, Marco ;
Barbato, Alessandro ;
Schwede, Torsten .
BIOINFORMATICS, 2013, 29 (21) :2722-2728