Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning

被引:10
作者
Kleiman, Diego E. [1 ]
Nadeem, Hassan [2 ]
Shukla, Diwakar [1 ,2 ,3 ,4 ]
机构
[1] Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
MARKOV STATE MODELS; FORCE-FIELD; PROTEIN STRUCTURES; SIMULATION; MEMBRANE; LIGAND; TIME;
D O I
10.1021/acs.jpcb.3c04843
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics (MD) simulations are fundamental computational tools for the study of proteins and their free energy landscapes. However, sampling protein conformational changes through MD simulations is challenging due to the relatively long time scales of these processes. Many enhanced sampling approaches have emerged to tackle this problem, including biased sampling and path-sampling methods. In this Perspective, we focus on adaptive sampling algorithms. These techniques differ from other approaches because the thermodynamic ensemble is preserved and the sampling is enhanced solely by restarting MD trajectories at particularly chosen seeds rather than introducing biasing forces. We begin our treatment with an overview of theoretically transparent methods, where we discuss principles and guidelines for adaptive sampling. Then, we present a brief summary of select methods that have been applied to realistic systems in the past. Finally, we discuss recent advances in adaptive sampling methodology powered by deep learning techniques, as well as their shortcomings.
引用
收藏
页码:10669 / 10681
页数:13
相关论文
共 90 条
[1]  
Ahdritz G, 2022, bioRxiv, DOI [10.1101/2022.11.20.517210, 10.1101/2022.11.20.517210v2, DOI 10.1101/2022.11.20.517210, 10.1101/2022.11.20.517210]
[2]   Pitfalls of the Martini Model [J].
Alessandri, Riccardo ;
Souza, Paulo C. T. ;
Thallmair, Sebastian ;
Melo, Manuel N. ;
de Vries, Alex H. ;
Marrink, Siewert J. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (10) :5448-5460
[3]  
Allen M.P., 1989, Computer Simulation of Liquids
[4]  
[Anonymous], 2014, FS MD TRAJECTORIES
[5]   Weighted ensemble: Recent mathematical developments [J].
Aristoff, D. ;
Copperman, J. ;
Simpson, G. ;
Webber, R. J. ;
Zuckerman, D. M. .
JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (01)
[6]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[7]   On the Hill relation and the mean reaction time for metastable processes [J].
Baudel, Manon ;
Guyader, Arnaud ;
Lelievre, Tony .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 155 :393-436
[8]   Steady-state simulations using weighted ensemble path sampling [J].
Bhatt, Divesh ;
Zhang, Bin W. ;
Zuckerman, Daniel M. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (01)
[9]  
Blumer O, 2022, J PHYS CHEM LETT, V13, P11230, DOI 10.1021/acs.jpclett.2c03055
[10]   Enhanced Modeling via Network Theory: Adaptive Sampling of Markov State Models [J].
Bowman, Gregory R. ;
Ensign, Daniel L. ;
Pande, Vijay S. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (03) :787-794