Eyes of the machine: AI-assisted satellite archaeological survey in the Andes

被引:3
作者
Zimmer-Dauphinee, James [1 ]
Vanvalkenburgh, Parker [2 ]
Wernke, Steven A. [1 ]
机构
[1] Vanderbilt Univ, Dept Anthropol, Nashville, TN 37235 USA
[2] Brown Univ, Dept Anthropol, Providence, RI USA
关键词
South America; Andes; satellite survey; remote sensing; artificial intelligence; deep learning; GeoPACHA; CROP MARKS; IDENTIFICATION; REMAINS; IMAGERY;
D O I
10.15184/aqy.2023.175
中图分类号
Q98 [人类学];
学科分类号
030303 ;
摘要
Archaeological surveys conducted through the inspection of high-resolution satellite imagery promise to transform how archaeologists conduct large-scale regional and supra-regional research. However, conducting manual surveys of satellite imagery is labour- and time-intensive, and low target prevalence substantially increases the likelihood of miss-errors (false negatives). In this article, the authors compare the results of an imagery survey conducted using artificial intelligence computer vision techniques (Convolutional Neural Networks) to a survey conducted manually by a team of experts through the Geo-PACHA platform (for further details of the project, see Wernke et al. 2023). Results suggest that future surveys may benefit from a hybrid approach-combining manual and automated methods-to conduct an AI-assisted survey and improve data completeness and robustness.
引用
收藏
页码:245 / 259
页数:15
相关论文
共 45 条
[1]   Optimum temporal and spectral window for monitoring crop marks over archaeological remains in the Mediterranean region [J].
Agapiou, Athos ;
Hadjimitsis, Diofantos G. ;
Sarris, Apostolos ;
Georgopoulos, Andreas ;
Alexakis, Dimitrios D. .
JOURNAL OF ARCHAEOLOGICAL SCIENCE, 2013, 40 (03) :1479-1492
[2]   Detection of Neolithic Settlements in Thessaly (Greece) Through Multispectral and Hyperspectral Satellite Imagery [J].
Alexakis, Dimitrios ;
Sarris, Apostolos ;
Astaras, Theodoros ;
Albanakis, Konstantinos .
SENSORS, 2009, 9 (02) :1167-1187
[3]   Artificial intelligence for sex determination of skeletal remains: Application of a deep learning artificial neural network to human skulls [J].
Bewes, James ;
Low, Andrew ;
Morphett, Antony ;
Pate, F. Donald ;
Henneberg, Maciej .
JOURNAL OF FORENSIC AND LEGAL MEDICINE, 2019, 62 :40-43
[4]  
Buetti-Dinh Antoine, 2019, Biotechnology Reports, V22, pe00321, DOI 10.1016/j.btre.2019.e00321
[5]   Automated identification and deep classification of cut marks on bones and its paleoanthropological implications [J].
Byeon, Wonmin ;
Dominguez-Rodrigo, Manuel ;
Arampatzis, Georgios ;
Baquedano, Enrique ;
Yravedra, Jose ;
Angel Mate-Gonzalez, Miguel ;
Koumoutsakos, Petros .
JOURNAL OF COMPUTATIONAL SCIENCE, 2019, 32 :36-43
[6]  
Casana J., 2013, MAPPING ARCHAEOLOGIC, P31, DOI [DOI 10.1007/978-1-4614-6074-9_4, 10.1007/978-1-4614-6074-9_4]
[7]   Global-Scale Archaeological Prospection using CORONA Satellite Imagery: Automated, Crowd-Sourced, and Expert-led Approaches [J].
Casana, Jesse .
JOURNAL OF FIELD ARCHAEOLOGY, 2020, 45 :S89-S100
[8]   Regional-Scale Archaeological Remote Sensing in the Age of Big Data Automated Site Discovery vs. Brute Force Methods [J].
Casana, Jesse .
ADVANCES IN ARCHAEOLOGICAL PRACTICE, 2014, 2 (03) :222-233
[9]  
Comer D. C., 2013, Springer Briefs in Archaeology, V5, DOI [10.1007/978-1-4614-6074-9, DOI 10.1007/978-1-4614-6074-9]
[10]   Deep learning reveals extent of Archaic Native American shell-ring building practices [J].
Davis, Dylan S. ;
Caspari, Gino ;
Lipo, Carl P. ;
Sanger, Matthew C. .
JOURNAL OF ARCHAEOLOGICAL SCIENCE, 2021, 132