TriadNet: Sampling-Free Predictive Intervals for Lesional Volume in 3D Brain MR Images

被引:2
|
作者
Lambert, Benjamin [1 ,2 ]
Forbes, Florence [3 ]
Doyle, Senan [2 ]
Dojat, Michel [1 ]
机构
[1] Univ Grenoble Alpes, Grenoble Inst Neurosci, INSERM, F-38000 Grenoble, France
[2] Pixyl, Res & Dev Lab, F-38000 Grenoble, France
[3] Univ Grenoble Alpes, CNRS, INRIA, Grenoble INP,LJK, F-38000 Grenoble, France
来源
UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2023 | 2023年 / 14291卷
关键词
Brain MRI; Uncertainty; Segmentation; Deep Learning;
D O I
10.1007/978-3-031-44336-7_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The volume of a brain lesion (e.g. infarct or tumor) is a powerful indicator of patient prognosis and can be used to guide the therapeutic strategy. Lesional volume estimation is usually performed by segmentation with deep convolutional neural networks (CNN), currently the stateof-the-art approach. However, to date, few work has been done to equip volume segmentation tools with adequate quantitative predictive intervals, which can hinder their usefulness and acceptation in clinical practice. In this work, we propose TriadNet, a segmentation approach relying on a multi-head CNN architecture, which provides both the lesion volumes and the associated predictive intervals simultaneously, in less than a second. We demonstrate its superiority over other solutions on BraTS 2021, a large-scale MRI glioblastoma image database. Our implementation of TriadNet is available at https://github.com/benolmbrt/TriadNet.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 50 条
  • [41] Lightweight brain MR image super-resolution using 3D convolution
    Young Beom Kim
    The Van Le
    Jin Young Lee
    Multimedia Tools and Applications, 2024, 83 : 8785 - 8795
  • [42] Automatic Prostate Segmentation in MR images Based on 3D Active Contours with Shape Constraints
    Skalski, Andrzej
    Lagwa, Jakub
    Kedzierawski, Piotr
    Zielinski, Tomasz
    Kuszewski, Tomasz
    2013 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2013, : 246 - 249
  • [43] Calibration and segmentation free 3D modelling from images based on GPU
    Shu, Bo
    Qiu, Xianjie
    Wang, Zhaoqi
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2010, 38 (1-3) : 185 - 191
  • [44] Segmentation of ischemic stroke lesion from 3d mr images using random forest
    Anjali Gautam
    Balasubramanian Raman
    Multimedia Tools and Applications, 2019, 78 : 6559 - 6579
  • [45] Segmentation of ischemic stroke lesion from 3d mr images using random forest
    Gautam, Anjali
    Raman, Balasubramanian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (06) : 6559 - 6579
  • [46] Lightweight brain MR image super-resolution using 3D convolution
    Kim, Young Beom
    Van Le, The
    Lee, Jin Young
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 8785 - 8795
  • [47] Normative volume measurements of the fetal intra-cranial compartments using 3D volume in utero MR imaging
    Jarvis, Deborah A.
    Finney, Chloe R.
    Griffiths, Paul D.
    EUROPEAN RADIOLOGY, 2019, 29 (07) : 3488 - 3495
  • [48] Reliability of brain volume measures of accelerated 3D T1-weighted images with deep learning-based reconstruction
    Jung, Woojin
    Jeong, Geunu
    Kim, Sohyun
    Hwang, Inpyeong
    Choi, Seung Hong
    Jeon, Young Hun
    Choi, Kyu Sung
    Lee, Ji Ye
    Yoo, Roh-Eul
    Yun, Tae Jin
    Kang, Koung Mi
    NEURORADIOLOGY, 2025, 67 (01) : 171 - 182
  • [49] 3D Deep Learning for Automatic Brain MR Tumor Segmentation with T-Spline Intensity Inhomogeneity Correction
    Anand Kumar G.
    Sridevi P.V.
    Automatic Control and Computer Sciences, 2018, 52 (5) : 439 - 450
  • [50] Rough segmentation of coherent local intensity for bias induced 3-D MR brain images
    Roy, Shaswati
    Maji, Pradipta
    PATTERN RECOGNITION, 2020, 97