TriadNet: Sampling-Free Predictive Intervals for Lesional Volume in 3D Brain MR Images

被引:2
|
作者
Lambert, Benjamin [1 ,2 ]
Forbes, Florence [3 ]
Doyle, Senan [2 ]
Dojat, Michel [1 ]
机构
[1] Univ Grenoble Alpes, Grenoble Inst Neurosci, INSERM, F-38000 Grenoble, France
[2] Pixyl, Res & Dev Lab, F-38000 Grenoble, France
[3] Univ Grenoble Alpes, CNRS, INRIA, Grenoble INP,LJK, F-38000 Grenoble, France
来源
UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2023 | 2023年 / 14291卷
关键词
Brain MRI; Uncertainty; Segmentation; Deep Learning;
D O I
10.1007/978-3-031-44336-7_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The volume of a brain lesion (e.g. infarct or tumor) is a powerful indicator of patient prognosis and can be used to guide the therapeutic strategy. Lesional volume estimation is usually performed by segmentation with deep convolutional neural networks (CNN), currently the stateof-the-art approach. However, to date, few work has been done to equip volume segmentation tools with adequate quantitative predictive intervals, which can hinder their usefulness and acceptation in clinical practice. In this work, we propose TriadNet, a segmentation approach relying on a multi-head CNN architecture, which provides both the lesion volumes and the associated predictive intervals simultaneously, in less than a second. We demonstrate its superiority over other solutions on BraTS 2021, a large-scale MRI glioblastoma image database. Our implementation of TriadNet is available at https://github.com/benolmbrt/TriadNet.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 50 条
  • [31] Convolution of 3D Gaussian surfaces for volumetric intensity inhomogeneity estimation and correction in 3D brain MR image data
    Kahali, Sayan
    Adhikari, Sudip Kumar
    Sing, Jamuna Kanta
    IET COMPUTER VISION, 2018, 12 (03) : 288 - 297
  • [32] Automatic segmentation of brain tumor in intraoperative ultrasound images using 3D U-Net
    Carton, Francois-Xavier
    Chabanas, Matthieu
    Munkvold, Bodil K. R.
    Reinertsen, Ingerid
    Noble, Jack H.
    MEDICAL IMAGING 2020: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11315
  • [33] Automatic Segmentation of Brain Tumor from 3D MR Images Using SegNet, U-Net, and PSP-Net
    Weng, Yan-Ting
    Chan, Hsiang-Wei
    Huang, Teng-Yi
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 226 - 233
  • [34] Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network
    Tomita, Naofumi
    Jiang, Steven
    Maeder, Matthew E.
    Hassanpour, Saeed
    NEUROIMAGE-CLINICAL, 2020, 27
  • [35] Automated measurement of total kidney volume from 3D ultrasound images of patients affected by polycystic kidney disease and comparison to MR measurements
    Jagtap, Jaidip M.
    Gregory, Adriana, V
    Homes, Heather L.
    Wright, Darryl E.
    Edwards, Marie E.
    Akkus, Zeynettin
    Erickson, Bradley J.
    Kline, Timothy L.
    ABDOMINAL RADIOLOGY, 2022, 47 (07) : 2408 - 2419
  • [36] 3D reconstruction of 2D fluorescence histology images and registration with in vivo MR images: Application in a rodent stroke model
    Stille, Maik
    Smith, Edward J.
    Crum, William R.
    Modo, Michel
    JOURNAL OF NEUROSCIENCE METHODS, 2013, 219 (01) : 27 - 40
  • [37] PaFSe: A Parameter-Free Segmentation Approach for 3D Fluorescent Images
    Ameli C.
    Fixemer S.
    Bouvier D.S.
    Skupin A.
    SN Computer Science, 3 (6)
  • [38] 3D Nucleus Instance Segmentation for Whole-Brain Microscopy Images
    Ma, Junbo
    Krupa, Oleh
    Glass, Madison Rose
    McCormick, Carolyn M.
    Borland, David
    Kim, Minjeong
    Stein, Jason L.
    Wu, Guorong
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2021, 2021, 12729 : 504 - 516
  • [39] NeuroConstruct: 3D Reconstruction and Visualization of Neurites in Optical Microscopy Brain Images
    Ghahremani, Parmida
    Boorboor, Saeed
    Mirhosseini, Pooya
    Gudisagar, Chetan
    Ananth, Mala
    Talmage, David
    Role, Lorna W.
    Kaufman, Arie E.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (12) : 4951 - 4965
  • [40] 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets
    Jiang, Jun
    Wu, Yao
    Huang, Meiyan
    Yang, Wei
    Chen, Wufan
    Feng, Qianjin
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2013, 37 (7-8) : 512 - 521