TriadNet: Sampling-Free Predictive Intervals for Lesional Volume in 3D Brain MR Images

被引:2
|
作者
Lambert, Benjamin [1 ,2 ]
Forbes, Florence [3 ]
Doyle, Senan [2 ]
Dojat, Michel [1 ]
机构
[1] Univ Grenoble Alpes, Grenoble Inst Neurosci, INSERM, F-38000 Grenoble, France
[2] Pixyl, Res & Dev Lab, F-38000 Grenoble, France
[3] Univ Grenoble Alpes, CNRS, INRIA, Grenoble INP,LJK, F-38000 Grenoble, France
来源
UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2023 | 2023年 / 14291卷
关键词
Brain MRI; Uncertainty; Segmentation; Deep Learning;
D O I
10.1007/978-3-031-44336-7_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The volume of a brain lesion (e.g. infarct or tumor) is a powerful indicator of patient prognosis and can be used to guide the therapeutic strategy. Lesional volume estimation is usually performed by segmentation with deep convolutional neural networks (CNN), currently the stateof-the-art approach. However, to date, few work has been done to equip volume segmentation tools with adequate quantitative predictive intervals, which can hinder their usefulness and acceptation in clinical practice. In this work, we propose TriadNet, a segmentation approach relying on a multi-head CNN architecture, which provides both the lesion volumes and the associated predictive intervals simultaneously, in less than a second. We demonstrate its superiority over other solutions on BraTS 2021, a large-scale MRI glioblastoma image database. Our implementation of TriadNet is available at https://github.com/benolmbrt/TriadNet.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 50 条
  • [21] Construction and Application of a Probabilistic Atlas of 3D Landmark Points for Initialization of Hippocampus Mesh Models in Brain MR Images
    Poloni, Katia Maria
    Villa Pinto, Carlos Henrique
    Souza, Breno da Silveira
    Ferrari, Ricardo Jose
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2018, PT I, 2018, 10960 : 310 - 322
  • [22] Multiclass Brain Glioma Tumor Classification Using Block-Based 3D Wavelet Features of MR Images
    Latif, Ghazanfar
    Butt, M. Mohsin
    Khan, Adil H.
    Butt, Omair
    Iskandarl, D. N. F. Awang
    2017 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONIC ENGINEERING (ICEEE 2017), 2017, : 333 - 337
  • [23] MS lesions segmentation in 3D MR images using FCM and SVM
    Merzoug, Amina
    Benamrane, Nacera
    Taleb Ahmed, Abdelmalik
    2014 4TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2014, : 29 - 33
  • [24] 3DUV-NetR+: A 3D hybrid semantic architecture using transformers for brain tumor segmentation with MultiModal MR images
    Aboussaleh, Ilyasse
    Riffi, Jamal
    el Fazazy, Khalid
    Mahraz, Adnane Mohamed
    Tairi, Hamid
    RESULTS IN ENGINEERING, 2024, 21
  • [25] Fusion of Resampled 3D MR Images for Geometric Modeling of Blood Vessels
    Kocinski, Marek
    Materka, Andrzej
    Elgalal, Marcin
    Majos, Agata
    2018 INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS (ICSES 2018), 2018, : 218 - 223
  • [26] Segmentation of Vertebral Bodies in MR Images Based on Geometrical Models in 3D
    Stern, Darko
    Likar, Bostjan
    Pernus, Franjo
    Vrtovec, Tomaz
    MEDICAL IMAGING AND AUGMENTED REALITY, 2010, 6326 : 419 - 428
  • [27] 3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images
    Jia, Haozhe
    Xia, Yong
    Song, Yang
    Zhang, Donghao
    Huang, Heng
    Zhang, Yanning
    Cai, Weidong
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (02) : 447 - 457
  • [28] 3D Reconstruction for Volume of Interest in Computed Tomography Laser Mammography Images
    Jalalian, A.
    Mashohor, S.
    Mahmud, R.
    Saripan, M. I.
    Ramli, A. R.
    Bahri, N.
    Suppiah, S. A. P.
    Karasfi, B.
    2015 IEEE STUDENT SYMPOSIUM IN BIOMEDICAL ENGINEERING & SCIENCES (ISSBES), 2015, : 16 - 20
  • [29] Segmentation of vertebral bodies in CT and MR images based on 3D deterministic models
    Stern, Darko
    Vrtovec, Tomaz
    Pernus, Franjo
    Likar, Bostjan
    MEDICAL IMAGING 2011: IMAGE PROCESSING, 2011, 7962
  • [30] Localization and Segmentation of 3D Intervertebral Discs in MR Images by Data Driven Estimation
    Chen, Cheng
    Belavy, Daniel
    Yu, Weimin
    Chu, Chengwen
    Armbrecht, Gabriele
    Bansmann, Martin
    Felsenberg, Dieter
    Zheng, Guoyan
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (08) : 1719 - 1729