Segmenting white matter hyperintensities in brain magnetic resonance images using convolution neural networks

被引:6
作者
Duarte, Kaue T. N. [1 ,2 ]
Gobbi, David G. [1 ,2 ]
Sidhu, Abhijot S. [3 ,4 ]
Mccreary, Cheryl R. [1 ,4 ]
Saad, Feryal [1 ]
Camicioli, Richard [5 ]
Smith, Eric E. [1 ]
Frayne, Richard [1 ,2 ,3 ,4 ]
机构
[1] Univ Calgary, Hotchkiss Brain Inst, Radiol & Clin Neurosci, 3330 Hosp Dr NW, Calgary, AB T2N 1N4, Canada
[2] Calgary Image Proc & Anal Ctr, Foothills Med Ctr, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
[3] Univ Calgary, Biomed Engn Grad Program, 2500 Univ Drive NW, Calgary, AB T2N 1N4, Canada
[4] Seaman Family MR Res Ctr, Foothills Med Ctr, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
[5] Univ Alberta, Med Neurol, 7 112J Clin Sci Bldg, Edmonton, AB T6G 2R7, Canada
基金
加拿大创新基金会;
关键词
Image segmentation; White matter hyperintensity (WMH); Convolutional neural network (CNN); Alzheimer's disease (AD); Magnetic resonance (MR); Deep learning; DISEASE;
D O I
10.1016/j.patrec.2023.07.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
White matter hyperintensities (WMHs) are found on magnetic resonance (MR) images of older individuals and are associated with many neurodegenerative disorders, although the exactrole of WMHs in Alzheimer's disease and other dementias remains an open area of research. Fluid-attenuated inversion recovery (FLAIR) MR imaging sequences show WMHs with good image contrast. Manual segmentation of WMHs on FLAIR images is the widely accepted "gold standard", however, this step is often time-consuming and has a high inter-rater variability. The absence of an automated, robust and accurate approach to segment WMHs remains a processing bottleneck. We explored convolutional neural networks (CNNs) for performing semantic segmentation of WMHs in FLAIR images. Two sets of experiments were conducted: (1) Variations of U-shaped CNNs (U-Nets) were evaluated in 186 individuals, specifically, four architectures (VGG16, VGG19, ResNet152 and EfficientNetB0) having three dimensionalities (2D, 2.5D and 3D). (2) New data from 60 individuals were added to test the generalizability of U-Net, LinkNet and Feature-Pyramid Network (FPN) variants. The first experiment showed that the 2.5D implementation with VGG16 or VGG19 was the most suitable configuration when segmenting WMH (F-measure > 95% and intersection-over-union > 90%). The second experiment confirmed generalizability of these variants when using unprocessed FLAIR images.
引用
收藏
页码:90 / 94
页数:5
相关论文
共 23 条
[1]   Regional white matter hyperintensities: aging, Alzheimer's disease risk, and cognitive function [J].
Birdsill, Alex C. ;
Koscik, Rebecca L. ;
Jonaitis, Erin M. ;
Johnson, Sterling C. ;
Okonkwo, Ozioma C. ;
Hermann, Bruce P. ;
Larue, Asenath ;
Sager, Mark A. ;
Bendlin, Barbara B. .
NEUROBIOLOGY OF AGING, 2014, 35 (04) :769-776
[2]  
Chaurasia A, 2017, 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP)
[3]   Clinical Significance of Magnetic Resonance Imaging Markers of Vascular Brain Injury A Systematic Review and Meta-analysis [J].
Debette, Stephanie ;
Schilling, Sabrina ;
Duperron, Marie-Gabrielle ;
Larsson, Susanna C. ;
Markus, Hugh S. .
JAMA NEUROLOGY, 2019, 76 (01) :81-94
[4]   Segmenting White Matter Hyperintensity in Alzheimer's Disease using U-Net CNNs [J].
Duarte, Kaue T. N. ;
Gobbi, David G. ;
Sidhu, Abhijot S. ;
McCreary, Cheryl R. ;
Saad, Feryal ;
Das, Nita ;
Smith, Eric E. ;
Frayne, Richard .
2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022), 2022, :109-114
[5]   Detecting Alzheimer's Disease based on Structural Region Analysis using a 3D Shape Descriptor [J].
Duarte, Kaue T. N. ;
Gobbi, David G. ;
Frayne, Richard ;
de Carvalho, Marco A. G. .
2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020), 2020, :180-187
[6]   CT and MRI rating of white matter lesions [J].
Fazekas, F ;
Barkhof, F ;
Wahlund, LO ;
Pantoni, L ;
Erkinjuntti, T ;
Scheltens, P ;
Schmidt, R .
CEREBROVASCULAR DISEASES, 2002, 13 :31-36
[7]  
Gobbi D., 2012, CAN STROK C
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   Quantomo: validation of a computer-assisted methodology for the volumetric analysis of intracerebral haemorrhage [J].
Kosior, Jayme C. ;
Idris, Sherif ;
Dowlatshahi, Dar ;
Alzawahmah, Mohamed ;
Eesa, Muneer ;
Sharma, Pranshu ;
Tymchuk, Sarah ;
Hill, Michael D. ;
Aviv, Richard I. ;
Frayne, Richard ;
Demchuk, Andrew M. .
INTERNATIONAL JOURNAL OF STROKE, 2011, 6 (04) :302-305
[10]   Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge [J].
Kuijf, Hugo J. ;
Biesbroek, J. Matthijs ;
de Bresser, Jeroen ;
Heinen, Rutger ;
Andermatt, Simon ;
Bento, Mariana ;
Berseth, Matt ;
Belyaev, Mikhail ;
Cardoso, M. Jorge ;
Casamitjana, Adria ;
Collins, D. Louis ;
Dadar, Mahsa ;
Georgiou, Achilleas ;
Ghafoorian, Mohsen ;
Jin, Dakai ;
Khademi, April ;
Knight, Jesse ;
Li, Hongwei ;
Llado, Xavier ;
Luna, Miguel ;
Mahmood, Qaiser ;
McKinley, Richard ;
Mehrtash, Alireza ;
Ourselin, Sebastien ;
Park, Bo-Yong ;
Park, Hyunjin ;
Park, Sang Hyun ;
Pezold, Simon ;
Puybareau, Elodie ;
Rittner, Leticia ;
Sudre, Carole H. ;
Valverde, Sergi ;
Vilaplana, Veronica ;
Wiest, Roland ;
Xu, Yongchao ;
Xu, Ziyue ;
Zeng, Guodong ;
Zhang, Jianguo ;
Zheng, Guoyan ;
Chen, Christopher ;
van der Flier, Wiesje ;
Barkhof, Frederik ;
Viergever, Max A. ;
Biessels, Geert Jan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (11) :2556-2568