Digital Technology and the Future of Interstitial Lung Diseases 2 Machine learning in radiology: the new frontier in interstitial lung diseases

被引:51
作者
Barnes, Hayley [1 ,2 ,3 ]
Humphries, Stephen M. [4 ]
George, Peter M. [5 ,6 ]
Assayag, Deborah [7 ]
Glaspole, Ian [1 ,2 ]
Mackintosh, John A. [8 ]
Corte, Tamera J. [9 ,10 ]
Glassberg, Marilyn [11 ]
Johannson, Kerri A. [12 ]
Calandriello, Lucio [13 ]
Felder, Federico [6 ]
Wells, Athol [5 ,6 ]
Walsh, Simon [6 ]
机构
[1] Alfred Hlth, Dept Resp Med, Alfred, Vic, Australia
[2] Monash Univ, Cent Clin Sch, Melbourne, Vic, Australia
[3] Monash Univ, Ctr Occupat & Environm Hlth, Melbourne, Vic, Australia
[4] Natl Jewish Hlth, Dept Radiol, Denver, CO USA
[5] Royal Brompton & Harefield Hosp, Interstitial Lung Dis Unit, London, England
[6] Imperial Coll London, Natl Heart & Lung Inst, London, England
[7] McGill Univ, Dept Med, Montreal, PQ, Canada
[8] Prince Charles Hosp, Dept ofThorac Med, Brisbane, Qld, Australia
[9] Royal Prince Alfred Hosp, Dept Resp Med, Sydney, NSW, Australia
[10] Univ Sydney, Cent Clin Sch, Sydney, NSW, Australia
[11] Univ Arizona, Coll Med Phoenix, Div Pulm Crit Care & Sleep Med, Phoenix, AR USA
[12] Univ Calgary, Dept Med, Calgary, AB, Canada
[13] Fdn Policlin Univ Gemelli, IRCCS, Dept Diagnost Imaging Oncol Radiotherapy & Haemat, Rome, Italy
关键词
IDIOPATHIC PULMONARY-FIBROSIS; QUANTITATIVE CT INDEXES; COMPUTED-TOMOGRAPHY; PATTERNS; CLASSIFICATION; ABNORMALITIES; PIRFENIDONE; ASSOCIATION; PROGRESSION; PREDICTION;
D O I
10.1016/S2589-7500(22)00230-8
中图分类号
R-058 [];
学科分类号
摘要
Challenges for the effective management of interstitial lung diseases (ILDs) include difficulties with the early detection of disease, accurate prognostication with baseline data, and accurate and precise response to therapy. The purpose of this Review is to describe the clinical and research gaps in the diagnosis and prognosis of ILD, and how machine learning can be applied to image biomarker research to close these gaps. Machine-learning algorithms can identify ILD in at-risk populations, predict the extent of lung fibrosis, correlate radiological abnormalities with lung function decline, and be used as endpoints in treatment trials, exemplifying how this technology can be used in care for people with ILD. Advances in image processing and analysis provide further opportunities to use machine learning that incorporates deep-learning-based image analysis and radiomics. Collaboration and consistency are required to develop optimal algorithms, and candidate radiological biomarkers should be validated against appropriate predictors of disease outcomes.
引用
收藏
页码:E41 / E50
页数:10
相关论文
共 85 条
[1]   Deep learning for screening of interstitial lung disease patterns in high-resolution CT images [J].
Agarwala, S. ;
Kale, M. ;
Kumar, D. ;
Swaroop, R. ;
Kumar, A. ;
Dhara, A. Kumar ;
Thakur, S. Basu ;
Sadhu, A. ;
Nandi, D. .
CLINICAL RADIOLOGY, 2020, 75 (06) :481.e1-481.e8
[2]   A Convolutional Neural Network Approach to Quantify Lung Disease Progression in Patients with Fibrotic Hypersensitivity Pneumonitis (HP) [J].
Aliboni, Lorenzo ;
Dias, Olivia Meira ;
Baldi, Bruno Guedes ;
Sawamura, Marcio Valente Yamada ;
Chate, Rodrigo Caruso ;
Carvalho, Carlos Roberto Ribeiro ;
de Albuquerque, Andre Luis Pereira ;
Aliverti, Andrea ;
Pennati, Francesca .
ACADEMIC RADIOLOGY, 2022, 29 (08) :E149-E156
[3]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[4]   Development and Progression of Interstitial Lung Abnormalities in the Framingham Heart Study [J].
Araki, Tetsuro ;
Putman, Rachel K. ;
Hatabu, Hiroto ;
Gao, Wei ;
Dupuis, Josee ;
Latourelle, Jeanne C. ;
Nishino, Mizuki ;
Zazueta, Oscar E. ;
Kurugol, Sila ;
Ross, James C. ;
Estepar, Raul San Jose ;
Schwartz, David A. ;
Rosas, Ivan O. ;
Washko, George R. ;
O'Connor, George T. ;
Hunninghake, Gary M. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2016, 194 (12) :1514-1522
[5]   Densitometric and local histogram based analysis of computed tomography images in patients with idiopathic pulmonary fibrosis [J].
Ash, Samuel Y. ;
Harmouche, Rola ;
Vallejo, Diego Lassala Lopez ;
Villalba, Julian A. ;
Ostridge, Kris ;
Gunville, River ;
Come, Carolyn E. ;
Onieva, Jorge Onieva ;
Ross, James C. ;
Hunninghake, Gary M. ;
El-Chemaly, Souheil Y. ;
Doyle, Tracy J. ;
Nardelli, Pietro ;
Sanchez-Ferrero, Gonzalo V. ;
Goldberg, Hilary J. ;
Rosas, Ivan O. ;
Estepar, Raul San Jose ;
Washko, George R. .
RESPIRATORY RESEARCH, 2017, 18
[6]   Quantitative CT indexes in idiopathic pulmonary fibrosis: Relationship with physiologic impairment [J].
Best, AC ;
Lynch, AM ;
Bozic, CM ;
Miller, D ;
Grunwald, GK ;
Lynch, DA .
RADIOLOGY, 2003, 228 (02) :407-414
[7]   Idiopathic pulmonary fibrosis: Physiologic tests, quantitative CT indexes, and CT visual scores as predictors of mortality [J].
Best, Alan C. ;
Meng, Jiangfeng ;
Lynch, Anne M. ;
Bozic, Carmen M. ;
Miller, David ;
Grunwald, Gary K. ;
Lynch, David A. .
RADIOLOGY, 2008, 246 (03) :935-940
[8]   Nonuniform Fourier-decomposition MRI for ventilation- and perfusion-weighted imaging of the lung [J].
Bondesson, David ;
Schneider, Moritz J. ;
Gaass, Thomas ;
Kuehn, Bernd ;
Bauman, Grzegorz ;
Dietrich, Olaf ;
Dinkel, Julien .
MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (04) :1312-1321
[9]   Radiomics-based assessment of idiopathic pulmonary fibrosis is associated with genetic mutations and patient survival [J].
Budzikowski, Jorie D. ;
Foy, Joseph J. ;
Rashid, Ahmed A. ;
Chung, Jonathan H. ;
Noth, Imre ;
Armato, Samuel G., III .
JOURNAL OF MEDICAL IMAGING, 2021, 8 (03)
[10]   A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier [J].
Chang, Yongjun ;
Lim, Jonghyuck ;
Kim, Namkug ;
Seo, Joon Beom ;
Lynch, David A. .
MEDICAL PHYSICS, 2013, 40 (05)