MetaKG: Meta-Learning on Knowledge Graph for Cold-Start Recommendation

被引:25
|
作者
Du, Yuntao [1 ]
Zhu, Xinjun [1 ]
Chen, Lu [1 ]
Fang, Ziquan [1 ]
Gao, Yunjun [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, Hangzhou 310027, Peoples R China
关键词
Task analysis; Motion pictures; Semantics; Collaboration; Adaptation models; Training; Noise measurement; Cold-start recommendation; meta-learning; knowledge graph; graph neural networks;
D O I
10.1109/TKDE.2022.3168775
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A knowledge graph (KG) consists of a set of interconnected typed entities and their attributes. Recently, KGs are popularly used as the auxiliary information to enable more accurate, explainable, and diverse user preference recommendations. Specifically, existing KG-based recommendation methods target modeling high-order relations/dependencies from long connectivity user-item interactions hidden in KG. However, most of them ignore the cold-start problems (i.e., user cold-start and item cold-start) of recommendation analytics, which restricts their performance in scenarios when involving new users or new items. Inspired by the success of meta-learning on scarce training samples, we propose a novel meta-learning based framework called MetaKG, which encompasses a collaborative-aware meta learner and a knowledge-aware meta learner, to capture meta users' preference and entities' knowledge for cold-start recommendations. The collaborative-aware meta learner aims to locally aggregate user preferences for each preference learning task. In contrast, the knowledge-aware meta learner is to globally generalize knowledge representation across different user preference learning tasks. Guided by two meta learners, MetaKG can effectively capture the high-order collaborative relations and semantic representations, which could be easily adapted to cold-start scenarios. Besides, we devise a novel adaptive task scheduler which can adaptively select the informative tasks for meta learning in order to prevent the model from being corrupted by noisy tasks. Extensive experiments on various cold-start scenarios using three real datasets demonstrate that our presented MetaKG outperforms all the existing state-of-the-art competitors in terms of effectiveness, efficiency, and scalability.
引用
收藏
页码:9850 / 9863
页数:14
相关论文
共 50 条
  • [1] Meta-learning on dynamic node clustering knowledge graph for cold-start recommendation
    Pan, Hui
    Luo, Senlin
    Li, Xinshuai
    Pan, Limin
    Wu, Zhouting
    NEUROCOMPUTING, 2024, 602
  • [2] Meta-Learning for User Cold-Start Recommendation
    Bharadhwaj, Homanga
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [3] Boosting Meta-Learning Cold-Start Recommendation with Graph Neural Network
    Liu, Han
    Lin, Hongxiang
    Zhang, Xiaotong
    Ma, Fenglong
    Chen, Hongyang
    Wang, Lei
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4105 - 4109
  • [4] Multimodal Meta-Learning for Cold-Start Sequential Recommendation
    Pan, Xingyu
    Chen, Yushuo
    Tian, Changxin
    Lin, Zihan
    Wang, Jinpeng
    Hu, He
    Zhao, Wayne Xin
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3421 - 3430
  • [5] Relation-propagation meta-learning on an explicit preference graph for cold-start recommendation
    Liu, Huiting
    Wang, Lei
    Li, Peipei
    Qian, Cheng
    Zhao, Peng
    Wu, Xindong
    KNOWLEDGE-BASED SYSTEMS, 2023, 272
  • [6] Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation
    Lu, Yuanfu
    Fang, Yuan
    Shi, Chuan
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1563 - 1573
  • [7] CAML: Contextual augmented meta-learning for cold-start recommendation
    ur Rehman, Israr
    Ali, Waqar
    Jan, Zahoor
    Ali, Zulfiqar
    Xu, Hui
    Shao, Jie
    NEUROCOMPUTING, 2023, 533 : 178 - 190
  • [8] Preference-Adaptive Meta-Learning for Cold-Start Recommendation
    Wang, Li
    Jin, Binbin
    Huang, Zhenya
    Zhao, Hongke
    Lian, Defu
    Liu, Qi
    Chen, Enhong
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1607 - 1614
  • [9] Meta-Learning with AdaptiveWeighted Loss for Imbalanced Cold-Start Recommendation
    Kim, Minchang
    Yang, Yongjin
    Ryu, Jung Hyun
    Kim, Taesup
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 1077 - 1086
  • [10] Contrastive Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation
    Fang Y.
    Tan Z.
    Chen Z.-Y.
    Xiao W.-D.
    Zhang L.-L.
    Tian F.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (10):