Extending a predictable machine learning framework with efficient <sc>gemm</sc>-based convolution routines

被引:0
作者
Silva, Iryna De Albuquerque [1 ]
Carle, Thomas [2 ]
Gauffriau, Adrien [3 ]
Pagetti, Claire [1 ]
机构
[1] Off Natl Etud & Rech Aerosp, Toulouse, France
[2] Univ Toulouse 3, IRIT, CNRS, Toulouse, France
[3] Airbus, Toulouse, France
关键词
Safety-critical real-time systems; Artificial neural networks implementation; Predictable code generation; SET;
D O I
10.1007/s11241-023-09407-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To implement machine learning applications in real-time safety-critical systems, we previously introduced a predictable framework named ACETONE. This framework compiles the detailed description of an off-line trained feed-forward deep neural network into an equivalent C code. In this paper, we improve the performance of the generated C code by including GEMM-based convolutions in ACETONE. The code incorporating the GEMM routines maintains the ACETONE properties of semantics preservation and timing predictability. We compare the proposed method with ACETONE 's initial version, KERAs2C and uTVM on a realistic set of machine learning benchmarks and show that the introduced convolution algorithms allow a trade-off between performance and memory footprint.
引用
收藏
页码:408 / 437
页数:30
相关论文
共 60 条
[1]  
Abadi M., 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
[2]  
Alves E.E., 2018, Considerations in assuring safety of increasingly autonomous systems"
[3]  
Amiri H, 2017, 2017 19TH CSI INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), P25, DOI 10.1109/AISP.2017.8324097
[4]  
Anderson A, 2017, Arxiv, DOI arXiv:1709.03395
[5]  
[Anonymous], 2019, IEEE Standard for Floating-Point Arithmetic, P1, DOI [10.1109/IEEESTD.2008.4610935, 10.1109/IEEESTD.2019.8766229, DOI 10.1109/IEEESTD.2008.4610935]
[6]  
[Anonymous], 2006, 10 INT WORKSHOP FRON
[7]  
ApacheTVM, 2021, microTVM: TVM on bare-metal
[8]  
Ballabriga C, 2010, LECT NOTES COMPUT SC, V6399, P35, DOI 10.1007/978-3-642-16256-5_6
[9]  
Bhattacharyya S, 2015, INT CONF UNMAN AIRCR, P270, DOI 10.1109/ICUAS.2015.7152300
[10]  
Chen TQ, 2018, Arxiv, DOI arXiv:1802.04799