Carboxymethylated Alginate-Resiquimod Micelles Reverse the Immunosuppressive Tumor Microenvironment and Synergistically Enhance the Chemotherapy and Immunotherapy for Gastric Cancer

被引:11
作者
Chen, Jiamin [1 ,2 ]
Liu, Xingxing [1 ,2 ]
Zhao, Shujing [1 ,2 ]
Chen, Hongyican [1 ,2 ]
Lu, Tao [1 ,2 ]
Wang, Jinfeng [1 ,2 ]
Han, Jiahui [1 ,2 ]
Wu, Wangran [1 ,2 ]
Shen, Xian [3 ]
Li, Chao [1 ,2 ]
机构
[1] Wenzhou Med Univ, Affiliated Hosp 2, Wenzhou 325027, Zhejiang, Peoples R China
[2] Wenzhou Med Univ, Yuying Childrens Hosp, Wenzhou 325027, Zhejiang, Peoples R China
[3] Wenzhou Med Univ, Affiliated Hosp 1, Wenzhou 325027, Zhejiang, Peoples R China
关键词
resiquimod (R848); micelle; carboxymethylatedalginate (CMA); immunosuppression; cold tumor; hot tumor; NANOPARTICLES; POLARIZATION; MACROPHAGES; CURCUMIN; DELIVERY; CELLS;
D O I
10.1021/acsami.3c06828
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Due to the intrinsic weak immunogenicity of tumor cellsand thequantitatively and functionally different populations of immune cells,immunosuppression has become the major obstacle for cancer immunotherapy.In this study, the biocompatible alginate was chemically modifiedwith the carboxyethyl linker to facilitate the esterification reactionof the resultant carboxymethylated alginate (CMA) and resiquimod (R848),the agonist of Toll-like receptor 7/8 (TLR7/8a). In aqueous solution,the hydrophilic CMA and the hydrophobic R848 formed stable nanomicelles(CMA-R848) by self-assembling. After combined administration of CMA-R848and cisplatin (Cis) in a gastric cancer (GC) model, the long-circulatingCMA-R848 micelle reached the mild acidic tumor microenvironment (TME);the ester bonds were quickly cleaved by the ubiquitous esterase andreleased the single molecule of R848. In vitro and in vivo results demonstrated that the released R848 efficientlypromoted co-stimulatory molecules' expression of dendriticcells (DCs), enhanced the antigen uptake and cross-presentation, andprimed the cytotoxic T lymphocytes' (CTLs) infiltration andkilling effects, thereby reprogramming the "cold tumor"into the "hot tumor". In addition, the ex vivo tumor sections revealed that the released R848 effectively repolarizedthe M2-like tumor-associated macrophages (TAMs) into M1-like macrophages,exerted synergistic antitumor activity, reduced the tumor burden,and prolonged the overall survival duration of the GC animal model.Our study provided a targeting therapeutic strategy overcoming thelimitations of R848 in vivo, and enhanced the efficacyof GC chemotherapy and immunotherapy by TME modulation.
引用
收藏
页码:35999 / 36012
页数:14
相关论文
共 49 条
[1]   Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors [J].
Balta, Emre ;
Wabnitz, Guido H. ;
Samstag, Yvonne .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (11)
[2]   Understanding the tumor immune microenvironment (TIME) for effective therapy [J].
Binnewies, Mikhail ;
Roberts, Edward W. ;
Kersten, Kelly ;
Chan, Vincent ;
Fearon, Douglas F. ;
Merad, Miriam ;
Coussens, Lisa M. ;
Gabrilovich, Dmitry I. ;
Ostrand-Rosenberg, Suzanne ;
Hedrick, Catherine C. ;
Vonderheide, Robert H. ;
Pittet, Mikael J. ;
Jain, Rakesh K. ;
Zou, Weiping ;
Howcroft, T. Kevin ;
Woodhouse, Elisa C. ;
Weinberg, Robert A. ;
Krummel, Matthew F. .
NATURE MEDICINE, 2018, 24 (05) :541-550
[3]   A robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds [J].
Cao, Liming ;
Fan, Jianfeng ;
Huang, Jiarong ;
Chen, Yukun .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (09) :4922-4933
[4]   Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype [J].
Chen, Degao ;
Xie, Jing ;
Fiskesund, Roland ;
Dong, Wenqian ;
Liang, Xiaoyu ;
Lv, Jiadi ;
Jin, Xun ;
Liu, Jinyan ;
Mo, Siqi ;
Zhang, Tianzhen ;
Cheng, Feiran ;
Zhou, Yabo ;
Zhang, Huafeng ;
Tang, Ke ;
Ma, Jingwei ;
Liu, Yuying ;
Huang, Bo .
NATURE COMMUNICATIONS, 2018, 9
[5]   Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination [J].
Chen, Po-Ming ;
Pan, Wen-Yu ;
Wu, Cheng-Yu ;
Yeh, Ching-Yen ;
Korupalli, Chiranjeevi ;
Luo, Po-Kai ;
Chou, Chun-Ju ;
Chia, Wei-Tso ;
Sung, Hsing-Wen .
BIOMATERIALS, 2020, 230
[6]   T-cell engaging poly(lactic-co-glycolic acid) nanoparticles as a modular platform to induce a potent cytotoxic immunogenic response against PD-L1 overexpressing cancer [J].
Duwa, Ramesh ;
Pokhrel, Ram Hari ;
Banstola, Asmita ;
Pandit, Mahesh ;
Shrestha, Prakash ;
Jeong, Jee-Heon ;
Chang, Jae-Hoon ;
Yook, Simmyung .
BIOMATERIALS, 2022, 291
[7]   Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy [J].
Figueiredo, Patricia ;
Lepland, Anni ;
Scodeller, Pablo ;
Fontana, Flavia ;
Torrieri, Giulia ;
Tiboni, Mattia ;
Shahbazi, Mohammad-Ali ;
Casettari, Luca ;
Kostiainen, Mauri A. ;
Hirvonen, Jouni ;
Teesalu, Tambet ;
Santos, Helder A. .
ACTA BIOMATERIALIA, 2021, 133 :231-243
[8]   Artificially cloaked viral nanovaccine for cancer immunotherapy [J].
Fusciello, Manlio ;
Fontana, Flavia ;
Tahtinen, Siri ;
Capasso, Cristian ;
Feola, Sara ;
Martins, Beatriz ;
Chiaro, Jacopo ;
Peltonen, Karita ;
Ylosmaki, Leena ;
Ylosmaki, Erkko ;
Hamdan, Firas ;
Kari, Otto K. ;
Ndika, Joseph ;
Alenius, Harri ;
Urtti, Arto ;
Hirvonen, Jouni T. ;
Santos, Helder A. ;
Cerullo, Vincenzo .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy [J].
Gao, Jing ;
Wang, Wei-qi ;
Pei, Qing ;
Lord, Megan S. ;
Yu, Hai-jun .
ACTA PHARMACOLOGICA SINICA, 2020, 41 (07) :986-994
[10]  
Gostowski RC, 2000, J PHYS ORG CHEM, V13, P735, DOI 10.1002/1099-1395(200011)13:11<735::AID-POC310>3.0.CO