Blow-Up Behavior of L2-Norm Solutions for Kirchhoff Equation in a Bounded Domain

被引:0
作者
Zhu, Xincai [1 ]
Zhang, Shu [2 ]
Wang, Changjian [1 ]
He, Chunxia [1 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Henan, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
关键词
Kirchhoff equation; L-2-norm solution; Minimizer; Bounded domain; Blow-up behavior; Regularity; POSITIVE SOLUTIONS; SCHRODINGER-EQUATIONS; NORMALIZED SOLUTIONS; EXISTENCE; UNIQUENESS; STATES; MASS;
D O I
10.1007/s40840-023-01548-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to studying the following Kirchhoff equation - (a + b integral(Omega) vertical bar del u vertical bar(2)dx) Delta u = mu u + beta vertical bar u vertical bar(p)u + lambda vertical bar u vertical bar(q)u, x is an element of Omega u = 0, x is an element of partial derivative Omega, where Omega subset of R-3 is a bounded connected domain and integral(Omega) |u|(2)dx = 1. The results of existence and nonexistence on L-2-norm solutions are given. Our argument shows that the blow-up behavior of L-2-norm solution occurs, and the mass concentrates at an inner point of L-2, or the neighborhood of some boundary point.
引用
收藏
页数:14
相关论文
共 34 条
[1]   Generalized critical Kirchhoff-type potential systems with Neumann Boundary conditions [J].
Chems Eddine, Nabil ;
Ragusa, Maria Alessandra .
APPLICABLE ANALYSIS, 2022, 101 (11) :3958-3988
[2]   Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3 [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Shuai, Wei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (11) :3500-3527
[3]   EXISTENCE AND NON-EXISTENCE RESULTS FOR SEMILINEAR ELLIPTIC PROBLEMS IN UNBOUNDED-DOMAINS [J].
ESTEBAN, MJ ;
LIONS, PL .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1982, 93 :1-14
[4]  
Gidas B., 1981, MATH ANAL APPL PART, V7, P369
[5]   Fractional calculus, zeta functions and Shannon entropy [J].
Guariglia, Emanuel .
OPEN MATHEMATICS, 2021, 19 (01) :87-100
[6]  
Guariglia E, 2016, SPRINGER P MATH STAT, V179, P337, DOI 10.1007/978-3-319-42105-6_16
[7]   BLOW-UP SOLUTIONS FOR A KIRCHHOFF TYPE ELLIPTIC EQUATION WITH TRAPPING POTENTIAL [J].
Guo, Helin ;
Zhang, Yimin ;
Zhou, Huansong .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (05) :1875-1897
[8]   On the Mass Concentration for Bose-Einstein Condensates with Attractive Interactions [J].
Guo, Yujin ;
Seiringer, Robert .
LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (02) :141-156
[9]   Boundary value problems for nonlinear impulsive Hamiltonian systems [J].
Guseinov, Gusein Sh. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 :780-789
[10]  
Han Q., 2011, COURANT LECT NOTES M, V1