CRISPR/Cas-mediated genome editing in mice for the development of drug delivery mechanism

被引:4
作者
Sowbhagya, Ramachandregowda [1 ]
Muktha, Harsha [1 ]
Ramakrishnaiah, Thippenahalli Narasimhaiah [1 ]
Surendra, Adagur Sudarshan [2 ]
Tanvi, Yesudas [1 ]
Nivitha, Karayi [1 ]
Rajashekara, Somashekara [3 ]
机构
[1] MS Ramaiah Coll Arts Sci & Commerce, Dept Biotechnol & Genet, 7th Main Rd,MSRIT, Bengaluru 560054, Karnataka, India
[2] MS Ramaiah Coll Arts Sci & Commerce, Dept Biochem, 7th Main Rd,MSRIT, Bengaluru 560054, Karnataka, India
[3] Bangalore Univ, Ctr Appl Genet, Dept Studies Zool, Jnana Bharathi Campus,Off Mysuru Rd, Bengaluru 560056, Karnataka, India
关键词
CRISPR/Cas9; Germline; Somatic; Neurological; Cardiovascular; Cancer; Mice models; IN-VIVO; MOUSE MODELS; TECHNOLOGIES; DISEASE; GENES;
D O I
10.1007/s11033-023-08659-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background To manipulate particular locations in the bacterial genome, researchers have recently resorted to a group of unique sequences in bacterial genomes that are responsible for safeguarding bacteria against bacteriophages. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) are two such systems, each of which consists of an RNA component and an enzyme component. Methods and results This review focuses primarily on how CRISPR/Cas9 technology can be used to make models to study human diseases in mice. Creating RNA molecules that direct endonucleases to a specific position in the genome are crucial for achieving a specific genetic modification. CRISPR/Cas9 technology has allowed scientists to edit the genome with greater precision than ever before. Researchers can use knock-in and knock-out methods to model human diseases such as Neurological, cardiovascular disease, and cancer. Conclusions In terms of developing innovative methods to discover ailments for diseases/disorders, improved CRISPR/Cas9 technology will provide easier access to valuable novel animal models. [GRAPHICS]
引用
收藏
页码:7729 / 7743
页数:15
相关论文
共 57 条
  • [1] Efficient Gene Disruption in Cultured Primary Human Endothelial Cells by CRISPR/Cas9
    Abrahimi, Parwiz
    Chang, William G.
    Kluger, Martin S.
    Qyang, Yibing
    Tellides, George
    Saltzman, W. Mark
    Pober, Jordan S.
    [J]. CIRCULATION RESEARCH, 2015, 117 (02) : 121 - 128
  • [2] In situ CRISPR-Cas9 base editing for the development of genetically engineered mouse models of breast cancer
    Annunziato, Stefano
    Lutz, Catrin
    Henneman, Linda
    Bhin, Jinhyuk
    Wong, Kim
    Siteur, Bjorn
    van Gerwen, Bas
    de Korte-Grimmerink, Renske
    Zafra, Maria Paz
    Schatoff, Emma M.
    Drenth, Anne Paulien
    van der Burg, Eline
    Eijkman, Timo
    Mukherjee, Siddhartha
    Boroviak, Katharina
    Wessels, Lodewyk F. A.
    van de Ven, Marieke
    Huijbers, Ivo J.
    Adams, David J.
    Dow, Lukas E.
    Jonkers, Jos
    [J]. EMBO JOURNAL, 2020, 39 (05)
  • [3] A genome-wide CRISPR/Cas9 screen in acute myeloid leukemia cells identifies regulators of TAK-243 sensitivity
    Barghout, Samir H.
    Aman, Ahmed
    Nouri, Kazem
    Blatman, Zachary
    Arevalo, Karen
    Thomas, Geethu E.
    MacLean, Neil
    Hurren, Rose
    Ketela, Troy
    Saini, Mehakpreet
    Abohawya, Moustafa
    Kiyota, Taira
    Al-Awar, Rima
    Schimmer, Aaron D.
    [J]. JCI INSIGHT, 2021, 6 (05)
  • [4] CRISPR-Cas12-based detection of SARS-CoV-2
    Broughton, James P.
    Deng, Xianding
    Yu, Guixia
    Fasching, Clare L.
    Servellita, Venice
    Singh, Jasmeet
    Miao, Xin
    Streithorst, Jessica A.
    Granados, Andrea
    Sotomayor-Gonzalez, Alicia
    Zorn, Kelsey
    Gopez, Allan
    Hsu, Elaine
    Gu, Wei
    Miller, Steve
    Pan, Chao-Yang
    Guevara, Hugo
    Wadford, Debra A.
    Chen, Janice S.
    Chiu, Charles Y.
    [J]. NATURE BIOTECHNOLOGY, 2020, 38 (07) : 870 - +
  • [5] The societal opportunities and challenges of genome editing
    Carroll, Dana
    Charo, R. Alta
    [J]. GENOME BIOLOGY, 2015, 16
  • [6] Staying on target with CRISPR-Cas
    Carroll, Dana
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (09) : 807 - 809
  • [7] A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9
    Carroll, Kelli J.
    Makarewich, Catherine A.
    McAnally, John
    Anderson, Douglas M.
    Zentilin, Lorena
    Liu, Ning
    Giacca, Mauro
    Bassel-Duby, Rhonda
    Olson, Eric N.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (02) : 338 - 343
  • [8] Permanent Alteration of PCSK9 With In Vivo CRISPR-Cas9 Genome Editing
    Ding, Qiurong
    Strong, Alanna
    Patel, Kevin M.
    Ng, Sze-Ling
    Gosis, Bridget S.
    Regan, Stephanie N.
    Cowan, Chad A.
    Rader, Daniel J.
    Musunuru, Kiran
    [J]. CIRCULATION RESEARCH, 2014, 115 (05) : 488 - +
  • [9] The new frontier of genome engineering with CRISPR-Cas9
    Doudna, Jennifer A.
    Charpentier, Emmanuelle
    [J]. SCIENCE, 2014, 346 (6213) : 1077 - +
  • [10] Modeling Disease In Vivo With CRISPR/Cas9
    Dow, Lukas E.
    [J]. TRENDS IN MOLECULAR MEDICINE, 2015, 21 (10) : 609 - 621