Polarization-driven high Rabi frequency of piezotronic valley transistors

被引:6
作者
Liu, Ruhao [1 ]
Zhang, Yaming [1 ]
Zhou, Yuankai [1 ]
Nie, Jiaheng [2 ]
Li, Lijie [3 ]
Zhang, Yan [1 ,4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Cybersecur, Chengdu 610225, Peoples R China
[3] Swansea Univ, Coll Engn, Swansea SA1 8EN, England
[4] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
关键词
Piezotronics; Spintronics; Valleytronics; Monolayer transition metal dichalcogenides; Valley qubit; PIEZO-PHOTOTRONICS; SPIN; MONOLAYER; MOS2; ELECTRONICS;
D O I
10.1016/j.nanoen.2023.108550
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The properties of spin and valley transport of piezotronics valley transistor is studied based on a normal/ ferromagnetic/normal (NFN) structure of monolayer (ML) transition metal dichalcogenides (TMDs). Rabi fre-quency reach up to 4200 MHz based on piezotronics effect, which is about 1000 times higher than that of ZnO/ CdO quantum well devices. Strain-induced strong polarization can control properties of spin and valley transport in piezo-phototronic transistor. The strong polarization can be applied on the modulation of the valley qubit. The spin and valley conductance and the spin and valley polarizability are calculated theoretically. The strong po-larization can be applied on the manipulation of valley qubit, which paves a new way to quantum computing applications based on piezotronic valley transistors.
引用
收藏
页数:10
相关论文
共 105 条
[1]   EXPLICIT, 1ST-PRINCIPLES TIGHT-BINDING THEORY [J].
ANDERSEN, OK ;
JEPSEN, O .
PHYSICAL REVIEW LETTERS, 1984, 53 (27) :2571-2574
[2]   Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions [J].
Baumgartner, Christian ;
Fuchs, Lorenz ;
Costa, Andreas ;
Reinhardt, Simon ;
Gronin, Sergei ;
Gardner, Geoffrey C. ;
Lindemann, Tyler ;
Manfra, Michael J. ;
Junior, Paulo E. Faria ;
Kochan, Denis ;
Fabian, Jaroslav ;
Paradiso, Nicola ;
Strunk, Christoph .
NATURE NANOTECHNOLOGY, 2022, 17 (01) :39-+
[3]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[4]   Electric dipole spin resonance of two-dimensional semiconductor spin qubits [J].
Brooks, Matthew ;
Burkard, Guido .
PHYSICAL REVIEW B, 2020, 101 (03)
[5]   Resonant optical Stark effect in monolayer WS2 [J].
Cunningham, Paul D. ;
Hanbicki, Aubrey T. ;
Reinecke, Thomas L. ;
McCreary, Kathleen M. ;
Jonker, Berend T. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   High performance quantum piezotronic tunneling transistor based on edge states of MoS2 nanoribbon [J].
Dan, Minjiang ;
Hu, Gongwei ;
Li, Lijie ;
Zhang, Yan .
NANO ENERGY, 2022, 98
[7]   Intrinsic Piezoelectricity in Two-Dimensional Materials [J].
Duerloo, Karel-Alexander N. ;
Ong, Mitchell T. ;
Reed, Evan J. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (19) :2871-2876
[8]   Splitting between bright and dark excitons in transition metal dichalcogenide monolayers [J].
Echeverry, J. P. ;
Urbaszek, B. ;
Amand, T. ;
Marie, X. ;
Gerber, I. C. .
PHYSICAL REVIEW B, 2016, 93 (12)
[9]   Spin and Valley States in Gate-Defined Bilayer Graphene Quantum Dots [J].
Eich, Marius ;
Pisoni, Riccardo ;
Overweg, Hiske ;
Kurzmann, Annika ;
Lee, Yongjin ;
Rickhaus, Peter ;
Ihn, Thomas ;
Ensslin, Klaus ;
Herman, Frantisek ;
Sigrist, Manfred ;
Watanabe, Kenji ;
Taniguchi, Takashi .
PHYSICAL REVIEW X, 2018, 8 (03)
[10]  
Fiori G, 2014, NAT NANOTECHNOL, V9, P768, DOI [10.1038/nnano.2014.207, 10.1038/NNANO.2014.207]