Review of deep learning methods for remote sensing satellite images classification: experimental survey and comparative analysis

被引:73
作者
Adegun, Adekanmi Adeyinka [1 ]
Viriri, Serestina [1 ]
Tapamo, Jules-Raymond [2 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[2] Univ KwaZulu Natal, Sch Engn, Durban, South Africa
关键词
Satellite images; Remote sensing images; Convolutional neural networks; Vision Transformer; Deep learning; Image classification; NETWORK;
D O I
10.1186/s40537-023-00772-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Classification and analysis of high-resolution satellite images using conventional techniques have been limited. This is due to the complex characteristics of the imagery. These images are characterized by features such as spectral signatures, complex texture and shape, spatial relationships and temporal changes. In this research, we present the performance evaluation and analysis of deep learning approaches based on Convolutional Neural Networks and vision transformer towards achieving efficient classification of remote sensing satellite images. The CNN-based models explored include ResNet, DenseNet, EfficientNet, VGG and InceptionV3. The models were evaluated on three publicly available EuroSAT, UCMerced-LandUse and NWPU-RESISC45 datasets containing categories of images. The models achieve promising results in accuracy, recall, precision and F1-score. This performance demonstrates the feasibility of Deep Learning approaches in learning the complex and in-homogeneous features of the high-resolution remote sensing images.
引用
收藏
页数:24
相关论文
共 40 条
[1]   Classification of Remote Sensing Images Using EfficientNet-B3 CNN Model With Attention [J].
Alhichri, Haikel ;
Alswayed, Asma S. ;
Bazi, Yakoub ;
Ammour, Nassim ;
Alajlan, Naif A. .
IEEE ACCESS, 2021, 9 :14078-14094
[2]   Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community [J].
Ball, John E. ;
Anderson, Derek T. ;
Chan, Chee Seng .
JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
[3]   Learning Multi-Granularity Neural Network Encoding Image Classification Using DCNNs for Easter Africa Community Countries [J].
Bosco, Musabe Jean ;
Wang, Guoyin ;
Hategekimana, Yves .
IEEE ACCESS, 2021, 9 :146703-146718
[4]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[5]   Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks [J].
Chen, Xueyun ;
Xiang, Shiming ;
Liu, Cheng-Lin ;
Pan, Chun-Hong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (10) :1797-1801
[6]   Remote Sensing Image Scene Classification: Benchmark and State of the Art [J].
Cheng, Gong ;
Han, Junwei ;
Lu, Xiaoqiang .
PROCEEDINGS OF THE IEEE, 2017, 105 (10) :1865-1883
[7]   Object detection in remote sensing imagery using a discriminatively trained mixture model [J].
Cheng, Gong ;
Han, Junwei ;
Guo, Lei ;
Qian, Xiaoliang ;
Zhou, Peicheng ;
Yao, Xiwen ;
Hu, Xintao .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 85 :32-43
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification [J].
Helber, Patrick ;
Bischke, Benjamin ;
Dengel, Andreas ;
Borth, Damian .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (07) :2217-2226
[10]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554