Cu2S Nanoparticle-Modified Copper Hydroxide Nanowire Arrays for Optimized Electrochemical CO2 Reduction Selectivity

被引:10
作者
Cui, Enhui [1 ]
Zhang, Wei [1 ]
Zhou, Xuan [1 ]
Lv, Lei [1 ]
Chen, Wei [1 ]
Zhou, Liang [1 ,2 ,3 ]
Mai, Liqiang [1 ,2 ,3 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ Technol, Hubei Longzhong Lab, Xiangyang Demonstrat Zone, Xiangyang 441000, Hubei, Peoples R China
[3] Wuhan Univ Technol, Hainan Inst, Sanya 572000, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
copper-based catalyst; Cu2S nanoparticle; Cu(OH)(2) nanowire; electrochemical CO2 reduction; product selectivity; CARBON-DIOXIDE; CATALYSTS; ELECTROREDUCTION; CONVERSION; ATOMS; STATE;
D O I
10.1021/acsanm.3c01079
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A copper-based catalyst exhibits a wide distributionof catalyticproducts in electrochemical CO2 reduction. However, itfaces a grand challenge in reaction selectivity. A deeper understandingis needed regarding the mechanism of its diversified product selectivity.Herein, we design a cuprous sulfide nanoparticle-modified copper hydroxidenanowire array precatalyst by a simple solvothermal method for revealingthe catalytic mechanism of copper-based catalysts in electrochemicalCO(2) reduction. The role of cuprous sulfide nanoparticlemodification in copper hydroxide nanowires on formate formation duringCO(2) reduction is investigated. The intermediate duringCO(2) reduction is altered by sulfur modification, resultingin improvement in formate selectivity. Density functional theory isused to investigate the effect of trace sulfur modification in copperon activity and selectivity toward formate formation. Compared witha pure copper surface, sulfur modification in copper can promote theformation of *OCHO, a key intermediate along the formate pathway.
引用
收藏
页码:9361 / 9368
页数:8
相关论文
共 55 条
[1]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[2]   Tuning the Interactions in CuO Nanosheet-Decorated CeO2 Nanorods for Controlling the Electrochemical Reduction of CO2 to Methane or Ethylene [J].
Cai, Hao-Dong ;
Nie, Bao ;
Guan, Pingli ;
Cheng, Yuan-Sheng ;
Xu, Xu-Dong ;
Wu, Fang-Hui ;
Yuan, Guozan ;
Wei, Xian-Wen .
ACS APPLIED NANO MATERIALS, 2022, 5 (05) :7259-7267
[3]  
Chen YS, 2022, CHINESE J CATAL, V43, P1703, DOI 10.1016/S1872-2067(21)63988-8
[4]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+
[5]   Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor [J].
Fan, Lei ;
Xia, Chuan ;
Zhu, Peng ;
Lu, Yingying ;
Wang, Haotian .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes [J].
Feaster, Jeremy T. ;
Shi, Chuan ;
Cave, Etosha R. ;
Hatsukade, Tom T. ;
Abram, David N. ;
Kuhl, Kendra P. ;
Hahn, Christopher ;
Norskov, Jens K. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2017, 7 (07) :4822-4827
[7]   Transition metal-based catalysts for the electrochemical CO2reduction: from atoms and molecules to nanostructured materials [J].
Franco, Federico ;
Rettenmaier, Clara ;
Jeon, Hyo Sang ;
Roldan Cuenya, Beatriz .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (19) :6884-6946
[8]   Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel [J].
Gao, Shan ;
Lin, Yue ;
Jiao, Xingchen ;
Sun, Yongfu ;
Luo, Qiquan ;
Zhang, Wenhua ;
Li, Dianqi ;
Yang, Jinlong ;
Xie, Yi .
NATURE, 2016, 529 (7584) :68-+
[9]   Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction [J].
Gong, Qiufang ;
Ding, Pan ;
Xu, Mingquan ;
Zhu, Xiaorong ;
Wang, Maoyu ;
Deng, Jun ;
Ma, Qing ;
Han, Na ;
Zhu, Yong ;
Lu, Jun ;
Feng, Zhenxing ;
Li, Yafei ;
Zhou, Wu ;
Li, Yanguang .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Understanding X-ray absorption spectra by means of descriptors and machine learning algorithms [J].
Guda, A. A. ;
Guda, S. A. ;
Martini, A. ;
Kravtsova, A. N. ;
Algasov, A. ;
Bugaev, A. ;
Kubrin, S. P. ;
Guda, L. V. ;
Sot, P. ;
van Bokhoven, J. A. ;
Coperet, C. ;
Soldatov, A. V. .
NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)