Voronovskaya estimates for convolution operators

被引:0
作者
Draganov, Borislav R. [1 ,2 ]
机构
[1] Sofia Univ St Kliment Ohridski, Dept Math & Informat, Sofia, Bulgaria
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
来源
DOLOMITES RESEARCH NOTES ON APPROXIMATION | 2023年 / 16卷
关键词
APPROXIMATION; SATURATION; THEOREMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a general method for establishing quantitative Voronovskaya-type estimates of convolution operators on homogeneous Banach spaces of periodic functions of one real variable or of functions on the real line. The method is based on properties of the Fourier transform of the kernel of the operator. We illustrate the elegance and the efficiency of this approach on two convolution operators-the Riesz typical means, and, in particular, the Fejer operator, and the generalized singular integral of Picard. A noteworthy feature of the former is the fact that, though the operator itself is saturated, the convergence in its Voronovskaya-type estimate can be of an arbitrary fast power-type provided that the function is smooth enough in a certain sense.
引用
收藏
页码:38 / 51
页数:14
相关论文
共 40 条
  • [1] The new forms of Voronovskaya's theorem in weighted spaces
    Acar, Tuncer
    Aral, Ali
    Rasa, Ioan
    [J]. POSITIVITY, 2016, 20 (01) : 25 - 40
  • [2] Anastassiou GA, 2011, INTEL SYST REF LIBR, V5, P1, DOI 10.1007/978-3-642-17098-0
  • [3] Polynomial Approximation of Anisotropic Analytic Functions of Several Variables
    Bonito, Andrea
    DeVore, Ronald
    Guignard, Diane
    Jantsch, Peter
    Petrova, Guergana
    [J]. CONSTRUCTIVE APPROXIMATION, 2021, 53 (02) : 319 - 348
  • [4] BUCHWALTER H, 1959, CR HEBD ACAD SCI, V248, P909
  • [5] BUCHWALTER H, 1960, CR HEBD ACAD SCI, V250, P651
  • [6] Bustamante J., 2020, Constr. Math. Anal., V3, P53
  • [7] Bustamante Jorge, 2017, Bernstein Operators and Their Properties, DOI DOI 10.1007/978-3-319-55402-0
  • [8] Butzer P. L., 1972, TOHOKU MATH J, V24, P551
  • [9] Butzer P. L., 1960, NEDERL AKAD WETENSCH, V22, P1
  • [10] Butzer P.L., 1960, ARCH RATIONAL MECH A, V5, P390