From Wavelet Analysis to Fractional Calculus: A Review

被引:11
作者
Guariglia, Emanuel [1 ,2 ]
Guido, Rodrigo C. [2 ]
Dalalana, Gabriel J. P. [2 ]
机构
[1] Wenzhou Kean Univ, Coll Sci & Technol, Sch Math Sci, 88 Daxue Rd, Wenzhou 325060, Peoples R China
[2] Sao Paulo State Univ UNESP, Inst Biosci Letters & Exact Sci, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
关键词
wavelet transform; wavelet basis; multiresolution analysis; fractional derivative; fractional model; fractional system; PID CONTROLLER; TIME; ALGORITHM; EQUATIONS; CLASSIFICATION; TRANSFORMS; FREQUENCY;
D O I
10.3390/math11071606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we review some important results on wavelets, together with their main applications. Similarly, we present the main results on fractional calculus and their current applications in pure and applied science. We conclude the paper showing the close interconnection between wavelet analysis and fractional calculus.
引用
收藏
页数:12
相关论文
共 96 条
[1]   Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine [J].
Abbasion, S. ;
Rafsanjani, A. ;
Farshidianfar, A. ;
Irani, N. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (07) :2933-2945
[2]   Interpretation and Dynamics of the Lotka-Volterra Model in the Description of a Three-Level Laser [J].
Aboites, Vicente ;
Bravo-Aviles, Jorge Francisco ;
Garcia-Lopez, Juan Hugo ;
Jaimes-Reategui, Rider ;
Huerta-Cuellar, Guillermo .
PHOTONICS, 2022, 9 (01)
[3]   A multiresolution approach to the electric field integral equation in antenna problems [J].
Andriulli, F. P. ;
Tabacco, A. ;
Vecchi, G. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (01) :1-21
[4]   Applications of fractional calculus in computer vision: A survey [J].
Arora, Sugandha ;
Mathur, Trilok ;
Agarwal, Shivi ;
Tiwari, Kamlesh ;
Gupta, Phalguni .
NEUROCOMPUTING, 2022, 489 :407-428
[5]  
Atas M.T., 2022, INT J APPL COMPUT MA, V8, P161, DOI [10.1007/s40819-022-01349-7, DOI 10.1007/S40819-022-01349-7]
[6]   A fractional-order model with different strains of COVID-19 [J].
Baba, Isa Abdullahi ;
Rihan, Fathalla A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 603
[7]   Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration [J].
Babolian, E. ;
Fattahzadeh, F. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) :1016-1022
[8]   Statistical detection of patterns in unidimensional distributions by continuous wavelet transforms [J].
Baluev, R., V .
ASTRONOMY AND COMPUTING, 2018, 23 :151-165
[9]   Anomalous transport in random fracture networks [J].
Berkowitz, B ;
Scher, H .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :4038-4041
[10]   Chebyshev wavelets approach for nonlinear systems of Volterra integral equations [J].
Biazar, J. ;
Ebrahimi, H. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (03) :608-616