Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9

被引:7
作者
Guo, Xiaochen [1 ]
Geng, Lishuang [1 ]
Jiang, Chaoqian [1 ]
Yao, Wang [1 ]
Jin, Junxue [1 ]
Liu, Zhonghua [1 ]
Mu, Yanshuang [1 ]
机构
[1] Northeast Agr Univ, Coll Life Sci, Key Lab Anim Cellular & Genet Engn Heilongjiang Pr, 600 Changjiang St, Harbin 150030, Peoples R China
关键词
Porcine; PFF cells; CRISPR; Cas9; gRNA-tRNA array; SCNT; PLURIPOTENT STEM-CELLS; GUIDE-RNA; GENERATION; EFFICIENCY; EMBRYOS; NUCLEASES;
D O I
10.1080/10495398.2023.2187402
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Multiplex gene modifications are highly required for various fields of porcine research. In many species, the CRISPR/Cas9 system has been widely applied for genomic editing and provides a potential tool for introducing multiplex genome mutations simultaneously. Here, we present a CRISPR-Cas9 gRNA-tRNA array (GTR-CRISPR) for multiplexed engineering of porcine fetal fibroblasts (PFFs). We successfully produced multiple sgRNAs using only one Pol III promoter by taking advantage of the endogenous tRNA processing mechanism in porcine cells. Using an all-in-one construct carrying GTR and Cas9, we disrupted the IGFBP3, MSTN, MC4R, and SOCS2 genes in multiple codon regions in one PFF cell simultaneously. This technique allows the simultaneous disruption of four genes with 5.5% efficiency. As a result, this approach may effectively target multiple genes at the same time, making it a powerful tool for establishing multiple genes mutant cells in pigs.
引用
收藏
页码:4703 / 4712
页数:10
相关论文
共 50 条
[41]   The length of guide RNA and target DNA heteroduplex effects on CRISPR/Cas9 mediated genome editing efficiency in porcine cells [J].
Lv, Jiawei ;
Wu, Shuang ;
Wei, Renyue ;
Li, Yan ;
Jin, Junxue ;
Mu, Yanshuang ;
Zhang, Yu ;
Kong, Qingran ;
Weng, Xiaogang ;
Liu, Zhonghua .
JOURNAL OF VETERINARY SCIENCE, 2019, 20 (03)
[42]   Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics [J].
Givens, Brittany E. ;
Naguib, Youssef W. ;
Geary, Sean M. ;
Devor, Eric J. ;
Salem, Aliasger K. .
AAPS JOURNAL, 2018, 20 (06)
[43]   Impact of CRISPR-Cas9-Based Genome Engineering in Farm Animals [J].
Singh, Parul ;
Ali, Syed Azmal .
VETERINARY SCIENCES, 2021, 8 (07)
[44]   Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery [J].
Lin, Steven ;
Staahl, Brett ;
Alla, Ravi K. ;
Doudna, Jennifer A. .
ELIFE, 2014, 3 :e04766
[45]   Genome editing of porcine zygotes via lipofection of two guide RNAs using a CRISPR/Cas9 system [J].
Lin, Qingyi ;
Takebayashi, Koki ;
Torigoe, Nanaka ;
Liu, Bin ;
Namula, Zhao ;
Hirata, Maki ;
Tanihara, Fuminori ;
Nagahara, Megumi ;
Otoi, Takeshige .
JOURNAL OF REPRODUCTION AND DEVELOPMENT, 2024, 70 (06) :356-361
[46]   A Review on the Mechanism and Applications of CRISPR/Cas9/Cas12/Cas13/Cas14 Proteins Utilized for Genome Engineering [J].
V. Edwin Hillary ;
S. Antony Ceasar .
Molecular Biotechnology, 2023, 65 :311-325
[47]   Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components [J].
Kazemian, Pardis ;
Yu, Si-Yue ;
Thomson, Sarah B. ;
Birkenshaw, Alexandra ;
Leavitt, Blair R. ;
Ross, Colin J. D. .
MOLECULAR PHARMACEUTICS, 2022, 19 (06) :1669-1686
[48]   Nebulous without white: annotated long-read genome assembly and CRISPR/Cas9 genome engineering in Drosophila nebulosa [J].
Sottolano, Christopher J. ;
Revaitis, Nicole T. ;
Geneva, Anthony J. ;
Yakoby, Nir .
G3-GENES GENOMES GENETICS, 2022, 12 (11)
[49]   Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris [J].
Weninger, Astrid ;
Hatzl, Anna-Maria ;
Schmid, Christian ;
Vogl, Thomas ;
Glieder, Anton .
JOURNAL OF BIOTECHNOLOGY, 2016, 235 :139-149
[50]   Production of non-mosaic genome edited porcine embryos by injection of CRISPR/Cas9 into germinal vesicle oocytes [J].
Xiaohu Sua ;
Wei Chen ;
Qingqing Cai ;
Puping Liang ;
Yaosheng Chen ;
Peiqing Cong ;
Junjiu Huang .
Journal of Genetics and Genomics, 2019, 46 (07) :335-342