Efficient Visible-Light-Driven CO2 Methanation with Self- Regenerated Oxygen Vacancies in Co3O4/NiCo2O4 Hetero- Nanocages: Vacancy-Mediated Selective Photocatalysis

被引:85
作者
Ni, Maomao [1 ]
Zhu, Yijia [1 ]
Guo, Changfa [1 ]
Chen, De-Li [1 ]
Ning, Jiqiang [1 ]
Zhong, Yijun [1 ]
Hu, Yong [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Dept Chem, Key Lab, Minist Educ Adv Catalysis Mat, Jinhua 321004, Peoples R China
[2] Zhejiang Normal Univ, Hangzhou Inst Adv Studies, Hangzhou 311231, Peoples R China
基金
中国国家自然科学基金;
关键词
oxygen vacancies; Z-scheme heterojunction; CO2; photoreduction; REDUCTION; SURFACE; TIO2; PHOTOREDUCTION; ANATASE; ZN;
D O I
10.1021/acscatal.2c05577
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface atomic vacancies in semiconductor photo catalysts are highly attractive for improving catalysis efficiency and product selectivity, but the underlying mechanism of vacancy mediated selectivity still remains ambiguous. By constructing a type of direct Z-scheme Co3O4/NiCo2O4 hetero-nanocage (HNC) that accommodates three kinds of possible oxygen vacancies (VOs), a comprehensive study was performed to unravel the roles of vacancies and demonstrate the mechanism of efficient visible-light driven carbon dioxide (CO2) methanation. Upon light irradiation, efficient separation of charge carriers occurs in the Z-scheme Co3O4/NiCo2O4 HNCs, leading to the transfer of an electron to NiCo2O4. It has been identified for NiCo2O4 that only the vacancy VO2 over three cations (Co, Co, and Ni) at octahedral sites could facilitate the methanation process and possess the behavior of self-regeneration. Intriguingly, after the release of the product CH4 from NiCo2O4-VO2, the remaining oxygen (*O) favorably combines with protons and electrons to produce water molecules, and therefore, VO2 vacancies are regenerated, which significantly improves the durability of the methanation process. Besides, Ni atoms are found to be critical in initiating the CO2 methanation process by upshifting the d-band center of Co in NiCo2O4-VO2 toward the Fermi level and reducing the energy barrier of the *CHO intermediate. As a result, the main product of CO2 reduction is switched from CO for Co3O4 to CH4 for NiCo2O4, and the optimized photocatalyst exhibits an impressive single-carbon (C1) compound formation rate of 20.32 mu mol g-1 h-1 and a high CH4 selectivity of up to 96.3%, outperforming the Co-/Ni-based photocatalysts. This work offers an in-depth insight into the precise atomic-level regulation of the photocatalytic selectivity and stability of Co3O4/ NiCo2O4 HNCs and opens a path for the development of robust CO2 reduction photocatalysts.
引用
收藏
页码:2502 / 2512
页数:11
相关论文
共 56 条
  • [1] [Anonymous], 2021, APPL CATAL B-ENVIRON, V293
  • [2] [Anonymous], 2022, CHEMSUSCHEM, V15
  • [3] [Anonymous], 2022, MATER HORIZ, V9, P607
  • [4] Highly Water-Resistant La-Doped Co3O4 Catalyst for CO Oxidation
    Bae, Junemin
    Shin, Dongjae
    Jeong, Hojin
    Kim, Beom-Sik
    Han, Jeong Woo
    Lee, Hyunjoo
    [J]. ACS CATALYSIS, 2019, 9 (11): : 10093 - 10100
  • [5] CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts
    Chang, Xiaoxia
    Wang, Tuo
    Gong, Jinlong
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (07) : 2177 - 2196
  • [6] Photocatalytic CO2 reduction by TiO2 and related titanium containing solids
    Dhakshinamoorthy, Amarajothi
    Navalon, Sergio
    Corma, Avelino
    Garcia, Hermenegildo
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) : 9217 - 9233
  • [7] Insights into Dynamic Surface Bromide Sites in Bi4O5Br2 for Sustainable N2 Photofixation
    Dong, Xing'an
    Cui, Zhihao
    Shi, Xian
    Yan, Ping
    Wang, Zhiming
    Co, Anne C.
    Dong, Fan
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (19)
  • [8] Perspective on Defective Semiconductor Heterojunctions for CO2 Photoreduction
    Guo, Changfa
    Chen, De-Li
    Hu, Yong
    [J]. LANGMUIR, 2022, 38 (21) : 6491 - 6498
  • [9] Guo ZG, 2019, NAT CATAL, V2, P801, DOI 10.1038/s41929-019-0331-6
  • [10] Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors
    Habisreutinger, Severin N.
    Schmidt-Mende, Lukas
    Stolarczyk, Jacek K.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (29) : 7372 - 7408