Completeness, closedness and metric reflections of pseudometric spaces

被引:1
作者
Bilet, Viktoriia [1 ]
Dovgoshey, Oleksiy [1 ,2 ]
机构
[1] Inst Appl Math & Mech NASU, Dept Theory Funct, Dobrovolskogo Str 1, UA-84100 Slovyansk, Ukraine
[2] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
关键词
Completeness; Pseudometric; Metric reflection of pseudometric; space; Equivalence relation; PRETANGENT SPACES; TANGENT SPACES;
D O I
10.1016/j.topol.2023.108440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that a metric space (X, d) is complete iff the set X is closed in every metric superspace of (X, d). For a given pseudometric space (Y, p), we describe the maximal class CEC(Y, p) of superspaces of (Y, p) such that (Y, p) is complete if and only if Y is closed in every (Z, Delta) is an element of CEC(Y, p). We also introduce the concept of pseudoisometric spaces and prove that spaces are pseudoisometric iff their metric reflections are isometric. The last result implies that a pseudometric space is complete if and only if this space is pseudoisometric to a complete pseudometric space. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Completeness number of families of subsets of convergence spaces
    Dolecki, Szymon
    TOPOLOGY AND ITS APPLICATIONS, 2016, 200 : 133 - 145
  • [42] On Information Orders on Metric Spaces
    Otafudu, Oliver Olela
    Valero, Oscar
    INFORMATION, 2021, 12 (10)
  • [43] On Principal Fuzzy Metric Spaces
    Gregori, Valentin
    Minana, Juan-Jose
    Morillas, Samuel
    Sapena, Almanzor
    MATHEMATICS, 2022, 10 (16)
  • [44] The problem of completeness for p-mean symmetric difference metric
    Li, FC
    Qiu, JQ
    Zhai, JR
    FUZZY SETS AND SYSTEMS, 2000, 116 (03) : 459 - 470
  • [45] REMARKS ON COMPLETENESS OF LATTICE-VALUED CAUCHY SPACES
    Jaeger, G.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2015, 12 (04): : 123 - 132
  • [46] A new algebraic criterion for completeness of inner product spaces
    Dvurecenskij, A
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 58 (03) : 205 - 208
  • [47] Quantale-valued Cauchy tower spaces and completeness
    Jaeger, Gunther
    Ahsanullah, T. M. G.
    APPLIED GENERAL TOPOLOGY, 2021, 22 (02): : 461 - 481
  • [48] Ultrafilter Completeness in epsilon-approach Nearness Spaces
    Tiwari, Surabhi
    MATHEMATICS IN COMPUTER SCIENCE, 2013, 7 (01) : 107 - 111
  • [49] Spectral Reflections of Topological Spaces
    Niels Schwartz
    Applied Categorical Structures, 2017, 25 : 1159 - 1185
  • [50] The completeness and separability of function spaces in nonadditive measure theory
    Kawabe, Jun
    Yamada, Naoki
    FUZZY SETS AND SYSTEMS, 2023, 466